
Combinatorial Approach
to Data Mining

Yury Lifshits
Caltech

http://yury.name

MIT, 29 November 2007

Based on joint work with Navin Goyal, Benjamin Hoffmann, Dirk Nowotka,
Hinrich Schütze and Shengyu Zhang

1 /31

Nearest neighbors
Preprocess a set S such that given any q
the closest point in S to q can be found quickly

Near-duplicates
Find all pairs of objects with distance
below some threshold in subquadratic time

Navigability design
Construct a graph such that local routing
is leading to target in logarithmic number of steps

Clustering
Split a set to k parts minimizing in-cluster distances

Today: distances are not given,
triangle inequality is not satisfied

2 /31

Outline

1 Combinatorial Framework

2 Results: New Algorithms

3 One Proof: Visibility Graph

4 Open Problems

3 /31

1
Combinatorial Framework
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Comparison Oracle

Dataset p1, . . . ,pn

Objects and distance (or similarity)
function are NOT given

Instead, there is a comparison oracle
answering queries of the form:

Who is closer to A: B or C?
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Disorder Inequality

Sort all objects by their similarity to p:

p r s

rankp(r)

rankp(s)

Then by similarity to r:

r s

rankr(s)

Dataset has disorder D if
∀p, r, s : rankr(s) ≤ D(rankp(r) + rankp(s))
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Combinatorial Framework

=

Comparison oracle
Who is closer to A: B or C?

+

Disorder inequality
rankr(s) ≤ D(rankp(r) + rankp(s))
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Combinatorial Framework: Pro & Contra

Advantages:

Does not require triangle inequality for distances

Applicable to any data model and any similarity
function

Require only comparative training information

Sensitive to “local density” of a dataset

Limitation: worst-case form of disorder inequality
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Combinatorial Ball

B(x, r) = {y : rankx(y) < r}

In other words, it is a subset of dataset S: the
object x itself and r − 1 its nearest neighbors

x
B(x,10)
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Combinatorial Net
A subset R ⊆ S is called a combinatorial
r-net iff the following two properties holds:

Covering: ∀y ∈ S,∃x ∈ R, s.t. rankx(y) < r.
Separation: ∀xi,xj ∈ R, rankxi(xj) ≥ r OR rankxj(xi) ≥ r

How to construct a combinatorial net?
What upper bound on its size can we guarantee?
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Disorder vs. Others

If expansion rate is c, disorder constant is
at most c2

Doubling dimension and disorder
dimension are incomparable

Disorder inequality implies combinatorial
form of “doubling effect”
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2
Results:
Combinatorial Algorithms
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Basic Data Structure

Combinatorial nets:
For every 0 ≤ i ≤ logn, construct a n

2i
-net

Pointers, pointers, pointers:

Direct & inverted indices: links between centers
and members of their balls

Cousin links: for every center keep pointers to
close centers on the same level

Navigation links: for every center keep pointers to
close centers on the next level
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Fast Net Construction

Theorem
Combinatorial nets can be constructed in
O(D7n log2n) time
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Nearest Neighbor Search
Assume S ∪ {q} has disorder constant D

Theorem
There is a deterministic and exact algorithm
for nearest neighbor search:

Preprocessing: O(D7n log2n)

Search: O(D4 logn)

Variations:

O(n) size of data structure, still poly(D) logn search

Randomized algorithm, O(D logn) search
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Navigability Design

Local routing in a graph:
Given target description
and the current node p
a message is forwarded
via one of the out-going edges from p

Design task:
Given a collection of points S = {p1, . . . ,pn}
construct a low-degree graph
and rules for local decisions
such that given a start p ∈ S and a target q
the nearest neighbor of q in S
can be reached in a small number of steps
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Visibility Graph

Theorem
Any dataset S has a visibility graph:

poly(D)n log2n construction time

O(D4 logn) out-degrees

Naïve greedy routing
deterministically reaches
exact nearest neighbor of q
in at most logn steps
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Near-Duplicates

Assume, comparison oracle can also tell us
whether σ(x,y) > T for some similarity
threshold T

Theorem
All pairs with over-T similarity can be found
deterministically in time

poly(D)(n log2n+ |Output|)
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Clustering

Combinatorial objective function for
k-clustering:

Minimize
∑

i∈[k]

∑

x,y∈Ci

rankx(y)

Theorem
A 32D3-approximate clustering can be
constructed in time poly(D)n log2n
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3
One Proof: Visibility Graph
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Problem Statement

Input:
Dataset S = {p1, . . . ,pn}
Represented by comparison oracle
Having disorder constant D

Design Task:
Connect every object with few others
Set local rules for routing

Routing Requirement: Given a target point q and a
starting point p ∈ S the nearest neighbor of q in S
should be reached by a few steps in the graph
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Greedy Routing

1 Use oracle to compare distances to q from
current point p and from all its neighbors
in the graph

2 If p is not the closet one, move to the one
which is the closest

3 Otherwise, STOP and return p

Also known as local search, hill climbing etc.
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q
p1

p2

p3

p4
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Definition of Visibility
A center ci in the n

2i
-net is visible from some

object p iff

rankp(ci) ≤ 3D2
n

2i

Interpretation: the farther you are the
larger radius you need to be visible
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Analysis

Three claims:

Out-degrees are O(D4 logn)

After i steps we reach a point that is at
least as close to q as the best center in
n
2i
-net

Visibility graph can be constructed in
poly(D)n log2n time
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Bound on Degrees

Connecting p with centers of r-net:

By construction, centers have ranks at
most 3D2r to p

There are disjoint r
2D balls around these

centers

Members of these disjoint balls have
O(D3)r rank to p

Thus, there are at most O(D4) such centers
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Fast Convergence

After i steps we reach a point that is at least
as close to q as the best point in n

2i
-net

Inductive proof. From i to i+ 1:

For the best center in i-th level rankq(c∗i ) ≤ Dri.

Similarly, c∗i+1 satisfies rankq(c
∗
i+1) ≤

Dri
2

From inductive conjecture: after i steps in a greedy
walk the current point p(i) also has rankq(p(i)) ≤ Dri

By disorder inequality p(i) is connected to c∗i+1
Therefore p(i+1) is at least as good as c∗i+1 is
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Directions for Further Research
Other problems in combinatorial framework:

Low-distortion embeddings
Closest pairs
Community discovery
Linear arrangement
Distance labelling
Dimensionality reduction

What if disorder inequality has exceptions,
but holds in average?

Insertions, deletions, changing metric

Metric regularizations

Experiments & implementation
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Call for Feedback

What do you like the most in these
results?

What is the most important question for
further studies?

Relevant literature?

Are you interested in further discussions?
I am around this evening and the whole
Friday.

Another talk: YL, “Open Problems TO GO”
Friday Nov 30, 4pm, 56-154, MIT Theory Reading Group
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Sponsored Links
http://yury.name

http://simsearch.yury.name
Tutorial, bibliography, people, links, open problems

Yury Lifshits and Shengyu Zhang

Similarity Search via Combinatorial Nets

http://yury.name/papers/lifshits2008similarity.pdf

Navin Goyal, Yury Lifshits, Hinrich Schütze

Disorder Inequality: A Combinatorial Approach to Nearest Neighbor Search

http://yury.name/papers/goyal2008disorder.pdf

Benjamin Hoffmann, Yury Lifshits, Dirk Novotka

Maximal Intersection Queries in Randomized Graph Models

http://yury.name/papers/hoffmann2007maximal.pdf
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Summary
Combinatorial framework:
comparison oracle + disorder inequality

Near-linear construction of combinatorial nets

Nearest neighbor search in almost logarithmic time

Deterministic detection of near-duplicates in
subquadratic time

Visibility graph: small degrees and deterministic
convergence in logn steps

Thanks for your attention!
Questions?
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