
Combinatorial Approach
to Similarity Search

Yury Lifshits
Yahoo! Research

SISAP 2009

Based on joint work with Navin Goyal, Hinrich Schütze and

Shengyu Zhang

1 / 37

Similarity Search for the Web

Recommendations

Personalized news aggregation

Ad targeting

“Best match” search
Resumes, jobs, cars, apartments, personals

Co-occurrence similarity
Suggesting new search terms

2 / 37

Nearest Neighbors in Theory
Sphere Rectangle Tree Orchard’s Algorithm k-d-B tree

Geometric near-neighbor access tree Excluded
middle vantage point forest mvp-tree Fixed-height

fixed-queries tree AESA Vantage-point
tree LAESA R∗-tree Burkhard-Keller tree BBD tree

Navigating Nets Voronoi tree Balanced aspect ratio

tree Metric tree vps-tree M-tree
Locality-Sensitive Hashing SS-tree

R-tree Spatial approximation tree
Multi-vantage point tree Bisector tree mb-tree Cover

tree Hybrid tree Generalized hyperplane tree Slim tree

Spill Tree Fixed queries tree X-tree k-d tree Balltree

Quadtree Octree Post-office tree
3 / 37

Theory: Four Techniques
Branch and bound

(p1 , p2 , p3 , p4 , p5)

(p1 , p2 , p3) (p4 , p5)

(p1 , p3) p2 p4 p5

p1p3

Greedy walks

q
p1

p2

p3

p4

Mappings: LSH,
random projections, minhashing

Epsilon nets
Works for small intrinsic dimension

4 / 37

Revision: Similarity Function
Contributing factors for paper recommendation:

Scientist Paper

co-authors

cited

interested in used words

author

cited

cited

Similarity is high when:
of chains is high, chains are short, chains are heavy

5 / 37

Revision: Basic Assumptions

In theory:
Triangle inequality
Doubling dimension is o(logn)

Typical web dataset has separation effect

For almost all i, j : 1/2 ≤ d(pi, pj) ≤ 1

Classic methods fail:
Branch and bound algorithms visit every object
Doubling dimension is at least logn/2

6 / 37

Revision: Basic Assumptions

In theory:
Triangle inequality
Doubling dimension is o(logn)

Typical web dataset has separation effect

For almost all i, j : 1/2 ≤ d(pi, pj) ≤ 1

Classic methods fail:
Branch and bound algorithms visit every object
Doubling dimension is at least logn/2

6 / 37

Revision: Basic Assumptions

In theory:
Triangle inequality
Doubling dimension is o(logn)

Typical web dataset has separation effect

For almost all i, j : 1/2 ≤ d(pi, pj) ≤ 1

Classic methods fail:
Branch and bound algorithms visit every object
Doubling dimension is at least logn/2

6 / 37

Contribution

Navin Goyal, YL, Hinrich Schütze, WSDM 2008:

Combinatorial framework: new approach to data
mining problems that does not require triangle
inequality

Nearest neighbor algorithm

YL, Shengyu Zhang, SODA 2009:

Better nearest neighbor search

Detecting near-duplicates

Navigability design for small worlds

7 / 37

Contribution

Navin Goyal, YL, Hinrich Schütze, WSDM 2008:

Combinatorial framework: new approach to data
mining problems that does not require triangle
inequality

Nearest neighbor algorithm

YL, Shengyu Zhang, SODA 2009:

Better nearest neighbor search

Detecting near-duplicates

Navigability design for small worlds

7 / 37

Outline

1 Combinatorial Framework

2 Combinatorial Random Walk

3 Combinatorial Nets Algorithm

4 Applications of Combinatorial Framework

8 / 37

1
Combinatorial Framework

9 / 37

Comparison Oracle

Dataset p1, . . . , pn

Objects and distance (or similarity)
function are NOT given

Instead, there is a comparison oracle
answering queries of the form:

Who is closer to A: B or C?

10 / 37

Disorder Inequality

Sort all objects by their similarity to p:

p r s

rankp(r)

rankp(s)

Then by similarity to r:

r s

rankr(s)

Dataset has disorder D if
∀p, r, s : rankr(s) ≤ D(rankp(r) + rankp(s))

11 / 37

Disorder Inequality

Sort all objects by their similarity to p:

p r s

rankp(r)

rankp(s)

Then by similarity to r:

r s

rankr(s)

Dataset has disorder D if
∀p, r, s : rankr(s) ≤ D(rankp(r) + rankp(s))

11 / 37

Disorder Inequality

Sort all objects by their similarity to p:

p r s

rankp(r)

rankp(s)

Then by similarity to r:

r s

rankr(s)

Dataset has disorder D if
∀p, r, s : rankr(s) ≤ D(rankp(r) + rankp(s))

11 / 37

Combinatorial Framework

=

Comparison oracle
Who is closer to A: B or C?

+

Disorder inequality
rankr(s) ≤ D(rankp(r) + rankp(s))

12 / 37

Combinatorial Framework: FAQ

Disorder of a metric space? Disorder of
Rk?

In what cases disorder is relatively small?

Experimental values of D for some
practical datasets?

13 / 37

Disorder vs. Others

If expansion rate is c, disorder constant is
at most c2

Doubling dimension and disorder
dimension are incomparable

Disorder inequality implies combinatorial
form of “doubling effect”

14 / 37

Combinatorial Framework: Pro & Contra

Advantages:

Does not require triangle inequality for distances

Applicable to any data model and any similarity
function

Require only comparative training information

Limitation: worst-case form of disorder inequality

15 / 37

Combinatorial Framework: Pro & Contra

Advantages:

Does not require triangle inequality for distances

Applicable to any data model and any similarity
function

Require only comparative training information

Limitation: worst-case form of disorder inequality

15 / 37

2
Combinatorial Random Walk

16 / 37

Ranwalk Informally

Hierarchical greedy navigation:
1 Start at random city p1

2 Among all airlines choose the one going most
closely to q, move there (say, to p2)

3 Among all railway routes from p2 choose the one
going most closely to q, move there (p3)

4 Among all bus routes from p3 choose the one going
most closely to q, move there (p4)

5 Repeat this logn times and return the final city

17 / 37

Ranwalk Informally

Hierarchical greedy navigation:
1 Start at random city p1

2 Among all airlines choose the one going most
closely to q, move there (say, to p2)

3 Among all railway routes from p2 choose the one
going most closely to q, move there (p3)

4 Among all bus routes from p3 choose the one going
most closely to q, move there (p4)

5 Repeat this logn times and return the final city

17 / 37

Ranwalk Informally

Hierarchical greedy navigation:
1 Start at random city p1

2 Among all airlines choose the one going most
closely to q, move there (say, to p2)

3 Among all railway routes from p2 choose the one
going most closely to q, move there (p3)

4 Among all bus routes from p3 choose the one going
most closely to q, move there (p4)

5 Repeat this logn times and return the final city

17 / 37

Ranwalk Informally

Hierarchical greedy navigation:
1 Start at random city p1

2 Among all airlines choose the one going most
closely to q, move there (say, to p2)

3 Among all railway routes from p2 choose the one
going most closely to q, move there (p3)

4 Among all bus routes from p3 choose the one going
most closely to q, move there (p4)

5 Repeat this logn times and return the final city

17 / 37

Ranwalk Informally

Hierarchical greedy navigation:
1 Start at random city p1

2 Among all airlines choose the one going most
closely to q, move there (say, to p2)

3 Among all railway routes from p2 choose the one
going most closely to q, move there (p3)

4 Among all bus routes from p3 choose the one going
most closely to q, move there (p4)

5 Repeat this logn times and return the final city

17 / 37

Ranwalk: Data structure
Set D′ = 6D log logn
For every object p in database S
choose at random:

D′ pointers to objects in S = B(p,n)

D′ pointers to objects in B(p, n2)
. . .

D′ pointers to objects in B(p,D′)

p

18 / 37

Ranwalk: Data structure
Set D′ = 6D log logn
For every object p in database S
choose at random:

D′ pointers to objects in S = B(p,n)

D′ pointers to objects in B(p, n2)
. . .

D′ pointers to objects in B(p,D′)

p

18 / 37

Ranwalk: Data structure
Set D′ = 6D log logn
For every object p in database S
choose at random:

D′ pointers to objects in S = B(p,n)

D′ pointers to objects in B(p, n2)
. . .

D′ pointers to objects in B(p,D′)

p

18 / 37

Ranwalk: Data structure
Set D′ = 6D log logn
For every object p in database S
choose at random:

D′ pointers to objects in S = B(p,n)

D′ pointers to objects in B(p, n2)
. . .

D′ pointers to objects in B(p,D′)

p

18 / 37

Ranwalk: Search via Greedy Walk

Start at random point p0

Check endpoints of 1st level pointers,
move to the best one p1

. . .

Check all D endpoints
of bottom-level pointers and
return the best one plogn

q
p1

p2

p3

p4

19 / 37

Analysis of Ranwalk

Assume that database points together with
query point S ∪ {q} satisfy disorder inequality
with constant D:

rankx(y) ≤ D(rankz(x) + rankz(y)).

Then for any error probability δ Ranwalk will
use the following resources:

Preprocessing space: O(D logn(log logn+ log1/δ)

Preprocessing time: O(n2 logn)

Search time O(D logn(log logn+ log1/δ) +D3)

20 / 37

3
Combinatorial Nets Algorithm

21 / 37

Navigating DAG

logn layers

Ci−1 ⊂ Ci

Down-degree is bounded (poly(D))

Search via “greedy dive”

22 / 37

Combinatorial Net
A subset R ⊆ S is called a combinatorial
r-net iff the following two properties holds:

Covering: ∀y ∈ S,∃x ∈ R, s.t. rankx(y) < r.
Separation: ∀xi, xj ∈ R, rankxi(xj) ≥ r OR rankxj(xi) ≥ r

How to construct a combinatorial net?
What upper bound on its size can we guarantee?

23 / 37

Combinatorial Net
A subset R ⊆ S is called a combinatorial
r-net iff the following two properties holds:

Covering: ∀y ∈ S,∃x ∈ R, s.t. rankx(y) < r.
Separation: ∀xi, xj ∈ R, rankxi(xj) ≥ r OR rankxj(xi) ≥ r

How to construct a combinatorial net?
What upper bound on its size can we guarantee?

23 / 37

Basic Data Structure

Combinatorial nets:
For every 0 ≤ i ≤ logn, construct a n

2i
-net

Pointers, pointers, pointers:

Direct & inverted indices: links between centers
and members of their balls

Cousin links: for every center keep pointers to
close centers on the same level

Navigation links: for every center keep pointers to
close centers on the next level

24 / 37

Basic Data Structure

Combinatorial nets:
For every 0 ≤ i ≤ logn, construct a n

2i
-net

Pointers, pointers, pointers:

Direct & inverted indices: links between centers
and members of their balls

Cousin links: for every center keep pointers to
close centers on the same level

Navigation links: for every center keep pointers to
close centers on the next level

24 / 37

Fast Net Construction

Theorem
Combinatorial nets can be constructed in
O(D7n log2n) time

25 / 37

Up’n’Down Trick

Assume your have 2r-net for the dataset

To compute an r-ball around some object p:

1 Take a center p′ of 2r ball that is covering p

2 Take all centers of 2r-balls nearby p′

3 For all of them write down all members of theirs
2r-balls

4 Sort all written objects with respect to p and keep r
most similar ones.

26 / 37

Search by Combinatorial Nets

logn layers

Ci−1 ⊂ Ci

Down-degree is bounded (poly(D))

Search via “greedy dive”

Navigating DAG:

Layer i: combinatorial net with radius n/2i

Down-links from p: members of next layer
i+ 1 having rank to p at most 3D2 n

2i+1

27 / 37

Analysis of Combinatorial Nets

Assume S ∪ {q} has disorder constant D

Theorem
There is a deterministic and exact algorithm
for nearest neighbor search:

Preprocessing: O(D7n log2n)

Search: O(D4 logn)

28 / 37

4
Applications of Combinatorial
Framework

29 / 37

Near-Duplicates

Assume, comparison oracle can also tell us
whether σ(x, y) > T for some similarity
threshold T

Theorem
All pairs with over-T similarity can be found
deterministically in time

poly(D)(n log2n+ |Output|)

30 / 37

Visibility Graph

Theorem
For any dataset S with disorder D there exists
a visibility graph:

poly(D)n log2n construction time

O(D4 logn) out-degrees

Naïve greedy routing
deterministically reaches
exact nearest neighbor of the given target q
in at most logn steps

31 / 37

q

p1

p2

p3

p4

32 / 37

q

p1

p2

p3

p4

32 / 37

q

p1

p2

p3

p4

32 / 37

q

p1

p2

p3

p4

32 / 37

q

p1

p2

p3

p4

32 / 37

q

p1

p2

p3

p4

32 / 37

Definition of Visibility
A center ci in the n

2i
-net is visible from some

object p iff

rankp(ci) ≤ 3D2
n

2i

Interpretation: the farther you are the
larger radius you need to be visible

33 / 37

Definition of Visibility
A center ci in the n

2i
-net is visible from some

object p iff

rankp(ci) ≤ 3D2
n

2i

Interpretation: the farther you are the
larger radius you need to be visible

33 / 37

Definition of Visibility
A center ci in the n

2i
-net is visible from some

object p iff

rankp(ci) ≤ 3D2
n

2i

Interpretation: the farther you are the
larger radius you need to be visible

33 / 37

Directions for Further Research

34 / 37

Future of Combinatorial Framework

What if disorder inequality has exceptions?

Insertions, deletions, changing metric

Experiments & implementation

Metric transformations

Unification challenge: disorder + doubling = ?

35 / 37

Summary

Combinatorial framework:

comparison oracle + disorder inequality

New algorithms:

Nearest neighbor search

Deterministic detection of near-duplicates

Navigability design

Thanks for your attention!
Questions?

36 / 37

Summary

Combinatorial framework:

comparison oracle + disorder inequality

New algorithms:

Nearest neighbor search

Deterministic detection of near-duplicates

Navigability design

Thanks for your attention!
Questions?

36 / 37

Links
http://yury.name

http://simsearch.yury.name
Tutorial, bibliography, people, links, open problems

Yury Lifshits and Shengyu Zhang

Combinatorial Algorithms for Nearest Neighbors, Near-Duplicates and
Small-World Design

http://yury.name/papers/lifshits2008similarity.pdf

Navin Goyal, Yury Lifshits, Hinrich Schütze

Disorder Inequality: A Combinatorial Approach to Nearest Neighbor Search

http://yury.name/papers/goyal2008disorder.pdf

Benjamin Hoffmann, Yury Lifshits, Dirk Novotka

Maximal Intersection Queries in Randomized Graph Models

http://yury.name/papers/hoffmann2007maximal.pdf

37 / 37

http://yury.name
http://simsearch.yury.name
http://yury.name/papers/lifshits2008similarity.pdf
http://yury.name/papers/goyal2008disorder.pdf
http://yury.name/papers/hoffmann2007maximal.pdf

	Combinatorial Framework
	Combinatorial Random Walk
	Combinatorial Nets Algorithm
	Applications of Combinatorial Framework

