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Abstract

We study the so called combinatorial framework for algorith-
mic problems in similarity spaces. Namely, the input dataset
is represented by a comparison oracle that given three points
x, y, y′ answers whether y or y′ is closer to x. We assume
that the similarity order of the dataset satisfies the four vari-
ations of the following disorder inequality: if x is the a’th
most similar object to y and y is the b’th most similar ob-
ject to z, then x is among the D(a + b) most similar objects
to z, where D is a relatively small disorder constant.

Though the oracle gives much less information com-
pared to the standard general metric space model where dis-
tance values are given, one can still design very efficient al-
gorithms for various fundamental computational tasks. For
nearest neighbor search we present deterministic and ex-
act algorithm with almost linear time and space complex-
ity of preprocessing, and near-logarithmic time complexity
of search. Then, for near-duplicate detection we present
the first known deterministic algorithm that requires just
near-linear time + time proportional to the size of output.
Finally, we show that for any dataset satisfying the disor-
der inequality a visibility graph can be constructed: all out-
degrees are near-logarithmic and greedy routing determinis-
tically converges to the nearest neighbor of a target in loga-
rithmic number of steps. The later result is the first known
work-around for Navarro’s impossibility of generalizing De-
launay graphs.

The technical contribution of the paper consists of han-
dling “false positives” in data structures and an algorithmic
technique up-aside-down-filter.

1 Introduction

The Combinatorial Framework. The state-
ment of many algorithmic problems is starting with
“Given n objects in metric space...”: nearest neighbor
search, clustering, closest pairs, near-duplicate detec-
tion. To formalize these problems we have to (1) define
the data representation and (2) make some assumptions
about the dataset. So far many algorithms were de-
signed for specific data model, such as Hamming cube
[26], or for so called general metric spaces [34] with as-
sumptions that some intrinsic dimension [13, 21, 25] is
small.
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However, there is a large class of instances that
requires principally new approach. We say a dataset
has the separation effect if the ratio between the largest
and the smallest pairwise distances is below 2. Take
for example the similarity measure “number of joint
friends” for members of a social network. In a typical
case there are at most 20 out 200 friends in common.
This give us 0.9 in the so called Jaccard distance for two
really similar people and 1.0 for completely unrelated.
The similar story is observed with texts (similarity by
words), webpages (similarity by referring sites), movies
(similarity by reviewers and ratings) and so on. In
all this cases all objects appeared to be “unique”.
Unfortunately, datasets with separation effect always
have the doubling dimension close to the worst possible.
Also the branch-and-bound techniques have to visit all
objects, because the metric triangle inequality produces
no new knowledge on yet uncomputed distances.

Addressing the challenge of separation effect, in
2008 Goyal, Lifshits and Schütze proposed the combi-
natorial framework [17]. Instead of the availability of
the distance between any two points in U , suppose we
are only given a comparison oracle O which can tells
whether y is closer to x or y′ is closer to x. In other
words, it discards all the metric information between
points, with only the relative closeness comparisons re-
mained. We define rankx(y) to be an integer position
of y in the list of all object in the dataset sorted by
closeness to x. The central assumption of this paper
is that R(x, y) = max(rankx(y), ranky(x)) is a quasi-
metric with some relatively small disorder constant D.
More formally, we assume that the following disorder
inequality holds: R(x, z) ≤ D(R(x, y) + R(y, z)). This
assumption is based on experimental observations on
Reuters corpus of news articles [17].

We think that the combinatorial framework is worth
studying for a number of reasons:

New solvable classes. Problems like nearest neigh-
bors are intractable in general. Thus, researchers
are looking for additional assumptions and sub-
classes of the input data that make the problem
easier. And as we show in this paper, the combi-
natorial framework provides such a new subclass.



This subclass turns out to be another relaxation of
low-expansion rate after doubling dimension frame-
work, and this subclass and that for constant dou-
bling dimension are incomparable. In particu-
lar, we can solve nearest neighbors even for some
datasets not satisfying the metric triangle inequal-
ity.

Addressing heterogeneous data models. In many
modern applications object representations that
are far from simple abstractions like Euclidean
space. For instance, consider a description of a
blog: language, geographic location (dictionary pa-
rameters), age, number of posts (numerical param-
eters), referring links and reader list (graph pa-
rameters), text of profile and posts (text param-
eters) and posting timestamps (time parameters).
Such a heterogeneous description needs a quite
complicated similarity function. E.g. it can in-
clude manually defined logical rules and threshold
functions. The combinatorial framework can work
with arbitrarily complicated similarity functions
without any customization. This is an important
advantage comparing to well-established locality-
sensitive hashing approach [20] that requires de-
signing new hash functions for every data model.

Using only relative order. In many applications,
designing a similarity (distance) function is chal-
lenge by itself. With the combinatorial framework
this task becomes easier. Say, when similarity itself
is a subject to learn [3], we need only comparative
training information.

Non-reducibility to studied models. The combi-
natorial framework draw some inspiration from
previously studied models, most notably doubling
dimension [18, 24, 25]. Despite some known results
on repairing quasimetrics [28], we do not see a
way to reduce this new model to the old ones.
If you try to define a metric for some similarity
order satisfying the disorder inequality you can
achieve the metric triangle inequality or a small
doubling dimension, but not both. Also, in the
combinatorial framework, the full similarity is not
given as a part of the input. Thus, evaluating
any distance based on similarity ranking can be
computationally very expensive.

Results. We present three new algorithms in the
paper.

Deterministic and exact algorithm for near-

est neighbor search. Nearest-Neighbor Search (NNS)
is the problem of preprocessing a set S of n objects ly-
ing in some space U with a similarity function σ so that

given a query q ∈ U , one can efficiently locate a point
in S that is most similar to q (among the points in
S). We present a deterministic preprocessing algorithm
of poly(D)n log2 n time complexity and a searching al-
gorithm of poly(D) log n time complexity for the NNS
problem. Note that the subquadratic time complex-
ity requires a computation even less than obtaining the
comparison information between all pairs.

Deterministic discovery of all near-

duplicates. Detecting and eliminating replicated
documents is recognized as one of the central problems
for search engines [6, 4, 10, 23]. Notice that this is
a typical situation of the separation effect: Almost
all distances in the range [ 12 , 1], since 50% similarity
is considered to be threshold for duplicates and thus
all “original” documents have over one half distances
between each other. Thus the metric triangle inequality
is non-informative and doubling constant/expansion
rate are close to the maximal possible. In this paper we
show that the combinatorial framework provides effi-
cient solution to near-duplicates. Assume our similarity
oracle can also answer queries “Whether similarity
between x and y is above the duplicate threshold or
not?” Then we can find deterministically all pairs of
near-duplicates in time poly(D)(n log2 n + |Output|).

Small world design. Starting from the seminal
paper of Kleinberg [22], navigating schemes for various
small world models were intensively studied. Designing
peer-to-peer network protocols such as Meridian [33]
raises the following Small World Design problem: given
n nodes in some metric space, construct a small number
of out-going connections for every node such that from
any given starting point greedy routing leads to the
nearest neighbor of the target point. For any dataset
with disorder constant D, we construct its visibility
graph, with O(D4 log n) out-degrees in poly(D)n log2 n
time. The greedy-style local search in visibility graph
finds the exact nearest neighbor of the target destination
by at most log n moves on the graph edges. And as a
corollary, visibility graph creates O(D4 log n)-to-check
certificates of being the exact nearest neighbor. Such
certificates are not known for previously studied models.

The Voronoi diagram and the closely related De-
launay graph have the following “local-implies-global”
property: If some point in the dataset is closer to query
q than the center of any adjacent Voronoi cell (i.e. any
Delaunay neighbor), then this point is the nearest neigh-
bor of q. Thus, greedy walk through Delaunay graph
will eventually lead to the nearest neighbor. In 1999
Navarro [29] made an attempt to find a structure similar
to Delaunay graph for a general metric space. Unfortu-
nately, he came up with the following negative result:

Given the pairwise distances for a finite subset S



of an unknown metric space U , for each a, b ∈ S there
exists a choice for U where a and b are connected in the
Delaunay graph of S.

Our result on visibility graph avoids a similar negative
barrier by using the concept of visible neighbors instead
of Delaunay neighbors.

Relations between the disorder inequality and other
concepts of intrinsic dimension, namely the doubling
dimension and the expansion rate, are also discussed.
We show that disorder inequality implies a combinato-
rial form of “doubling effect”. At the same time, if a
dataset has expansion rate c (definition by Karger and
Ruhl [21]) then its disorder constant is at most c2.

Technical contribution. Designing algorithms in
the combinatorial framework is challenging for a number
of reasons: (1) for a given pair, combinatorial ranking
is not given and can not be evaluated in constant
time, (2) we do not have numerical information about
closeness which can be very informative, (3) the disorder
inequality has a relaxation constant D and thus can not
be used directly in a recursive manner.

While our basic data structures are similar to
Krauthgamer-Lee [25] navigating nets and Chan-Dinitz-
Gupta density nets [9], the crucial additional one,
cousin table, is the original contribution of this paper.
Basically, we accompany the “vertical” data structure
(formed by a sequences of epsilon nets with shrinking
radius) with a “horizontal” one, called cousins, to help
to identify nearby members of the same layer. The
precise definition is the following: two centers x and
x′ of combinatorial balls of radius r are called cousins if
there are two members y ∈ B(x, r) and y′ ∈ B(x′, r)
such that y and y′ have rankat most r from each
other. Cousins are different from “friends” in [14] by
the following innovative property: they tolerate “false
positives”. E.g. checking whether a particular two
objects are cousins is very expensive and thus we use
“might-be-cousins” instead. On the algorithmic side, we
contribute with the “up-aside-down-filter” technique.
Having vertical and horizontal “maps” on some top
levels we create a map of the next level of preciseness by
looking for parents, for cousins of parents and finally for
children-of-cousins-of-parents. Due to our definition of
cousins this look up will always return the neighborhood
we are constructing at a given step.

1.1 Comparisons with related work Similarity

search in small intrinsic dimension. The combi-
natorial framework was introduced in [17], where the
authors gave two randomized algorithms for NNS. We
improve their results in two aspects (and therefore an-
swering two open problems there). Namely, our algo-

rithms are deterministic and use only subquadratic time
for preprocessing.

Let us compare our results to studies of growth
restricting metrics. Our algorithms are deterministic, as
opposed to the randomized data structure construction
in Hildrum et al. [19] (based on Karger and Ruhl [21]
and Plaxton et al. [31]). Comparing to cover-trees [5] we
have similar preprocessing and search time complexity.
But our key advantage comparing to all these results
is that the disorder inequality is an assumption strictly
weaker than the bounded growth rate, as we will show
in Section 2.

Speaking about doubling dimension, our algorithm
finds the exact nearest neighbor, compared to the
approximate ones by Krauthgamer and Lee [25, 24] and
by Cole and Gottlieb [14]. Our near-linear construction
of combinatorial nets is deterministic while the data
structure constructions by Clarkson [12] and Har-Peled
and Mendel [18] are randomized.

We still have to match two more results from
[5] and [14]: linear space bound and handling inser-
tions/delitions.

Near-duplicates. Compared to the results based
on the minhashing [7], ours has deterministic sub-
quadratic guarantee for running time and works for ar-
bitrary similarity functions.

Small world design. Early work on this in-
cludes Arya and Mount’s discussion of a greedy ”rout-
ing” scheme for approximate nearest neighbor search in
Rd [2]. Recent algorithms by Fraigniaud, Lebhar and
Lotker [16] and Slivkins [32] provide efficient solutions
assuming doubling dimension is O(log log n). Moreover,
[16] provides counterexamples for larger doubling di-
mensions. Our solution has a couple of advantages.
First, it has deterministic guarantee for convergence in
logarithmic number of steps. Second, it has no depen-
dence on the aspect ratio, i.e. ratio between maximal
and minimal distances.

2 The Combinatorial Framework

The combinatorial framework is a model of computation
for problems dealing with informal concept of “close-
ness”. In literature both terms of similarity and dis-
tance are used: (1) when points are close to each other
we say “distance is small” or “similarity is high”, (2)
for distance functions, the triangle inequality is usually
assumed. The combinatorial framework is focused on
the notion of similarity by not assuming the triangle
inequality for distance values.

Instead of providing exact values of similarity func-
tion σ we give an access to the comparison oracle which,
for each query (x, y, y′), tells whether σ(x, y) < σ(x, y′)
or σ(x, y) > σ(x, y′). For simplicity, throughout this



paper we assume that no tie exists.
Consider some dataset S of n points. For each

point x, all other n − 1 points y can be sorted by
σ(x, y). We call all these n sorted lists together to be
a similarity order for the dataset S. Indeed, this is
the only information we can get from the comparison
oracle. For any points x, y ∈ S, define rankx,S(y) to be
the position of y when the elements of S are sorted
according to similarity to x in the deceasing order.
We omit S when it is clear from the context. For
convenience let rankx(x) = 0. We define a combinatorial
ball as B(x, r) = {y : rankx(y) < r}.

Once we waive the real values of similarities, we
lost almost all the knowledge about the dataset. In
order to make algorithmic problems tractable we intro-
duce a consistency assumption for the similarity order.
Namely, we assume that the rankfunction satisfies the
following weak triangle inequalities:

rankx(y) ≤ D(rankx(z) + ranky(z)),(2.1)

rankx(y) ≤ D(rankx(z) + rankz(y)),(2.2)

rankx(y) ≤ D(rankz(x) + ranky(z)),(2.3)

rankx(y) ≤ D(rankz(x) + rankz(y)).(2.4)

The above inequalities are called the disorder inequali-
ties, and the minimal constant D making them true is
called the disorder constant. Some comments are in or-
der. First, we list all four possible disorder inequalities
simply because there seems not to be any strong reason
that some are more reasonable than others. Second, by
putting z = y in the first inequality, we have that

(2.5) rankx(y) ≤ Dranky(x).

Thus any one of the above four disorder inequalities
implies the other three with a constant D′ = D2. As
shown in [17], the disorder constant D captures the
intuitive notion of intrinsic dimension. The following
lemma illustrate this correspondence in the case of fixed
dimensions:

Lemma 2.1. For sufficiently large hypercube in the d-
dimensional integer grid Z

d with Euclidean distance, its
disorder constant is 2d−1 up to a multiplicative constant
close to one.

We also define the following notion to compare to the
doubling dimension.

Definition 2.1. (disorder dimension) Let (S, σ) be a
set in similarity space and D(S) be the disorder constant
of S. Then we call (1 + log D) the disorder dimension
of S.

2.1 Disorder constant vs. doubling constant

and expansion rate

Definition 2.2. The metric ball MB(p, r) is the set
of all possible objects within distance r from p. The
expansion rate of a set S in a metric space is the
minimal number c s.t. ∀p ∈ S, ∀r, it holds that
|MB(p, 2r) ∩ S| ≤ c|MB(p, r) ∩ S|.

Proposition 2.1. (Small expansion rates imply small
disorder constants) For any n-point set S with the
expansion rate c in a metric space, all the four disorder
inequalities are satisfied with D = c2.

Proof. Let us prove, say rankx(y) ≤ c2(rankz(y) +
rankz(x)). Assume that d(x, z) ≥ d(z, y), then
rankx(y) = |S ∩MB(x, d(x, y))| ≤ |S ∩MB(z, d(x, y)+
d(z, x))| by the metric triangle inequality. Note that
d(x, y) + d(z, x) ≤ 2d(z, x) + d(z, y) ≤ 3d(z, x), we have
|S∩MB(z, d(x, y)+d(z, x))| ≤ c2|S∩MB(z, d(z, x))| =
c2rankz(x) by the definition of expansion rate. The case
of d(x, z) ≤ d(z, y) and all the other three disorder in-
equalities are proved in a similar way.

Proposition 2.2. (Doubling effect) Consider a set S
of n points satisfying the disorder inequalities. Then for
any point p and integer r the combinatorial ball B(p, 2r)
can be covered by at most O(D2) combinatorial balls of
radius r.

Proof. Construct the covering in an greedy way: add
yet uncovered members of B(p, 2r) as new centers one
by one. Then, in any pair of centers the rankfrom the
later-selected to the earlier-selected is at least r. Thus,
if we look for “core” combinatorial balls of radius r/2D
around the same centers, they all are disjoint. On the
other hand, by the disorder inequality the members of
core balls having at most 2Dr rankto p. Thus, there can
not be more than 4D2 centers in our greedy covering.

Indyk’s examples. In email correspondence with
the first author Indyk showed a dataset with small
doubling constant but large disorder constant, and
another dataset with small disorder constant but large
doubling constant and expansion rate. We put these
examples to Appendix A.

3 Nearest Neighbor Search in the

Combinatorial Framework

Recall that the Nearest Neighbor Search problem is as
follows. Given an n-point data set S and the comparison
oracle O, preprocess the data s.t. given any other query
point q /∈ S, we can efficiently find the nearest neighbor
xNN of q, i.e. the point xNN with rankq(xNN ) = 1.
Let D be the disorder constant of S ∪ {q}. Throughout
the paper, we will use rankx(y) to mean rankx,S∪{q}(y).



3.1 Data Structures We are going to use five data
structures: a layered list of objects L, a direct index D,
an inverted index I, a set of navigation pointers N and
a cousin table C.

The layered list of objects L is an ordering of all
objects in the dataset p1, . . . , pn together with integer
thresholds t0 = 1 ≤ t1 ≤ . . . tk−1 ≤ tk = n.
These thresholds define layers in the list: layer Li =
{p1, . . . , pti

}. We require every layer i to satisfy the
combinatorial net definition with radius ri = n

2i :

Coverage. ∀0 ≤ i ≤ k ∀p ∈ S ∃p′ ∈
Li s.t. rankp′(p) < ri

Separation. ∀0 ≤ i ≤ k ∀p, p′ ∈ Li : rankp(p
′) ≥

ri OR rankp′(p) ≥ ri

The direct index D represents neighborhoods of
objects in the dataset. The larger i, the level of
appearance of an object, is, the smaller neighborhood
we store. Formally for every level i and every p ∈
Li − Li−1 we keep the sorted (by similarity to p) list
of n/2i most similar to p objects. We call these objects
children of p.

The inverted index I contains the same information
as the direct index but sorted by children rather than
by parent. Formally, for every i and for every p ∈ S we
list all p′ ∈ Li such that rankp′(p) < n

2i .
The navigation pointers N contain the collections of

pointers from every member of Li−1 to nearby members
of Li. Formally, there is a navigation link from p ∈ Li−1

to p′ ∈ Li if rankp(p
′) ≤ 3D2 n

2i . Actually, due to
technical reasons we allow “false positives” in navigation
pointers: all pointers that qualify should be listed, but
some non-qualifying links can be also included.

Cousins table C is the crucial auxiliary data struc-
ture in our work. For every member of every layer i
it contains links to nearby members of the same layer.
Formal rule is the following: p, p′ ∈ Li considered to be
cousins if they have children s ∈ B(p, n

2i ), s
′ ∈ B(p′, n

2i )
such that ranks(s

′) < n
2i+1 OR ranks′(s) < n

2i+1 . Again,
we allow false positives in this data structure: some
non-cousin links can be included.

3.2 Algorithms

Preprocessing Algorithm. Given the compari-
son oracle and the disorder constant D we construct
our five data structures. Here is the overall structure of
the algorithm, followed by more detailed explanations:

1. Take an arbitrary p1, set L0 = {p1}.

Sort all objects in S by their similarity to p1.

Initialize D, I, C with information corresponding to
layer 0.

2. For every 1 ≤ i ≤ dlog2 ne do:

Update I, compute the list of yet uncovered
objects U

Repeat until U is empty:

Take some point p ∈ U

Compute the ball B(p, n
2i )

Update D, I and U

Compute navigation pointers from Li−1 to Li

Compute cousin pointers for Li

Computing U : The first n/2i objects in D column
corresponding to some p ∈ Li−1 are its layer-i children.
Thus, we can mark p as their layer-i parent in our
inverted index I. Then we scan I and create the list U
of all objects that does not have any layer-i parent yet.

Computing a new ball: Here we use our core
technique: up-aside-down-filter. Take some p ∈ U . Use
I to identify some layer-(i−1) parent of p. Use C to take
all cousins of this parent. Use D to take all children of
all cousins of identified parent of p. Now sort them by
similarity to p and keep just n/2i most similar. These
are the actual members of B(p, n/2i). We prove it in
the next subsection. The sorted list of members of the
new ball goes to direct index, all membership facts go
to inverted index and now-covered objects are removed
from U .

Computing navigation pointers from layer i − 1 to
layer i: Take some p ∈ Li−1. Look up some of its
parents on the layer i−log(6D2). Take all cousins of this
parent. Take all layer-i children of these cousins. Sort
them by similarity to p and keep the 12D4 most similar
ones. Again, we use up-aside-down-filter technique.

Computing cousin links on layer i: For every p ∈ Li

do the following. Take an arbitrary parent on the layer
i − log(6D2). Take all cousins of this parent. Then,
take all children of these cousins. Next, remove the
objects that are not members of layer i. Finally, sort the
remaining list by similarity to p and keep just 12D4 most
similar ones. Return the selected ones as the cousins of
p.

Nearest Neighbor Search. We start the walk
over layered list L from p(0) = p1 ∈ L0. Then for
every i given some p(i) ∈ Li we retrieve the endpoints of
navigation pointers from p(i) to layer i+1, sort them by
similarity to query object q and set p(i+1) to be the best
of them. The search algorithm returns p(k) from the last
layer k as the nearest neighbor of q in the dataset S.

3.3 Analysis

Lemma 3.1. (Properties of data structures)
1. Layer size |Li| is at most 2D n

ri

= 2D · 2i



2. For any R ≥ r, and any object v, there are at most
4D2(R

r
) centers x in an r-net with rankv(x) ≤ R.

Proof. 1. All combinatorial balls of radius ri/2D
around the Li members are disjoint. Otherwise, there
exist p, p′ ∈ Li, z ∈ S s.t. rankp(z) < ri

2D
and

rankp′(z) < r
2D

. But then, by the disorder inequality,
rankp(p

′) < r, which contradicts the separation prop-
erty of combinatorial net. Note that we can have at
most n/(ri/2D) = 2Dn/ri disjoint balls with size ri/2D
in an n-point set S. Therefore |Li| ≤ 2Dn/ri.

2. Consider r/2D balls around all centers x s.t.
rankv(x) ≤ R. They are disjoint. By the disorder
inequality the members of these “core balls” having
rankat most 2DR to v, Therefore, the number of x is
no more than 2DR/(r/2D) = 4D2(R/r).

Theorem 3.1. (Preprocessing Analysis)
1. The procedure for computing a new ball procedure

returns the true members of the ball.

2. The procedure for computing navigation pointers
procedure returns all of the true navigation links
(possibly with false positives).

3. The procedure for computing cousin pointers re-
turns all of the true cousins (possibly with false pos-
itives).

4. The total time complexity of preprocessing is
O(D7n log2 n) and the space complexity is O(D5n+
Dn log n).

Proof. 1. Let p be a new added center to the layer i
and p′ be its true children. By definition of cousins,
their layer-(i − 1) parents are cousins. Thus, we will
discover all the true members of B(p, ri). Sorting the
list of candidates and keeping just ri best of them gives
us the exact set of ball members.

2. Let p → p′ be an eligible navigation pointer from
layer i − 1 to layer i. Then rankp(p

′) ≤ 3D2ri. Let
us look at their parents s, s′ on level i − log(6D2). We
have ranks(p) < 6D2ri, rank′

s(p
′) < 6D2ri. Thus, s

and s′ must be cousins. Therefore, our walk on p → a
parent → its cousins → their children will discover all
endpoints of the true navigation links.

By Lemma 2.2 there are at most 12D4 centers in
Li that have rankat most 3D2 to p. Thus, if we sort
candidates by their similarities to p and keep 12D4 best
of them, the true navigation pointers will survive.

3. Let p, p′ be an eligible cousin pair in layer i. Then,
there is a chain with ranks ri – ri/2 – ri between them.
Applying the disorder inequality twice we have that
the rankfrom cousin to cousin is at most D(D(ri +

ri/2)+ri) < 3D2ri. Consider their parents s, s′ on level
i − log(6D2). We have ranks(p) < 6D2ri, ranks′(p′) <
6D2ri. Thus, s and s′ must be cousins. Therefore, our
walk on p → a parent → its cousins → their children
will discover all endpoints of all true cousin links.

By Lemma 2.2 there are at most 12D4 centers in
Li that have rankat most 3D2 to p. Thus, if we sort
candidates by their similarity to p and keep 12D4 best
of them, the true cousins will survive.

4. In each iteration i,

• Computing list of uncovered object requires
O(|Li−1|ri−1) = O(Dn).

• Computing a single new ball requires O(D4ri−1 ·
log(D4ri−1)) = O(D4ri−1 log n). Thus, the over-
all time for constructing new balls is at most
|Li|O(D4ri−1 log n) = O(D5n log n).

• Computing navigation links for a single layer-(i−1)
object requires O(D4 · 6D2ri · log(D4 · 6D2ri)) =
O(D6ri log n). Thus, the overall time for con-
structing a new layer of navigation links is at most
|Li−1| · O(D6ri−1 log n) = O(D7n log n).

• Computing cousin links for a single layer-i ob-
ject requires O(D4 · 6D2ri · log(D4 · 6D2ri)) =
O(D6ri log n). Thus, the overall time for con-
structing cousin pointers in a new layer is at most
|Li−1| · O(D6ri−1 log n) = O(D7n log n).

Putting everything together and sum up for all log n
layers, we get an upper bound of O(D7n log2 n) for the
total time complexity.

And finally, here are the upper bounds on the space
complexity of our algorithm:

|L| = n

|D| = |I| =

log n∑

i=1

n

2i
2D2i = O(Dn log n),

|N | = O(D4)
∑

|Li| = O(D5n)

,

|C| = O(D4)
∑

|Li| = O(D5n)

Theorem 3.2. (Search Analysis)
1. Our search algorithm always returns the exact near-

est neighbor of q.

2. The time complexity is O(D4 log n).

Proof. Let xNN be the closest object to q in the whole
dataset and x∗

i be closest object within the layer i.
First we will show that rankq(x

∗
i ) ≤ Dri for all i.



Let zi be the layer-i parent of xNN . Thus, we have
rankzi

(xNN ) ≤ ri − 1. And since rankqxNN = 1, we
have rankq(zi) < Dri. However, x∗

i is the i-layer center
closest to q, and therefore rankq(x

∗
i ) ≤ Dri as well.

< ri

Dri<_
Dri<_ z

1q xNN

x*i

i <_ Dri _____3D
2

2
<_ ri−1

<_ Dri−1
q

x*
i

x*i−1

(a) (b)

Figure 1: Illustrations for the search analysis

We will further show that the p(i) obtained in the
searching algorithm is actually x∗

i defined as above. We
prove this by induction. The base case is trivially true.
Suppose pi−1 = x∗

i−1. Then since rankq(x
∗
i−1) ≤ Dri−1

and rankq(x
∗
i ) ≤ Dri, we have rankx∗

i−1
(x∗

i ) ≤ 3D2ri by
the disorder inequality. Since the navigation pointers
from x∗

i−1 go to all objects in the next that are 3D2ri-
close to x∗

i−1, we know that x∗
i has been linked from

x∗
i−1. Thus the p(i) founded in the searching algorithm

is the x∗
i . And finally, since the last layer contains all

points in S, the best one x∗
k is the neatest neighbor xNN .

The searching algorithm uses O(D4 log n) time to
find the nearest neighbor again because there are at
most O(D4) navigation links for each object and layer
number.

Remark. In practice we may not know the disor-
der constant D in advance. Well, we suggest to estimate
D via random sampling and use this value in implemen-
tation. We also suggest to be more optimistic and use
smaller values instead of O(D4) worst-case bounds on
number of navigation and cousins pointers.

4 Detecting Near-Duplicates

Assume, given a pair x, y our oracle can also tell whether
the similarity value σ(x, y) is above or below some
particular fixed threshold T . The problem of Near-
Duplicate Detection asks for an algorithm to find all
pairs whose similarity is above the threshold.

Theorem 4.1. (Near-duplicate detection) For a given
dataset of n objects with disorder constant D, all pairs
with similarity above some threshold T can be found
in poly(D)(n log2 n + |Output|) time. Here |Output|
denotes the actual number of near-duplicate pairs.

Proof. As the first step we compute the same five data
structures as in nearest neighbor solution. Now let us
describe an auxiliary procedure called k-check: it checks
whether a particular object x has less than k near-
duplicates. In the case of positive answer, the procedure
outputs all these objects. Using the inverted index I
we take x’s parent y in layer i with ri = 2k. Then we
get all cousins of y and collect all their layer-i children.
Finally, we check how many of these collected objects
have over-T similarity to x. By the disorder inequality
and the definition of cousin, all first k neighbors of x
are retrieved: they are covered by some cousin y′ of y.
If the number of discovered near-duplicates is smaller
than k then all near-duplicates are actually found. Since
there are poly(D) cousins, and each cousin has the
covering list of length 2k, the running time of k-check
is k · poly(D) (no matter whether the answer if positive
or not).

Now the algorithm is as follows. Perform k-check
for x with range k = 1, 2, 4, 8, . . . , until the procedure
finds less than k duplicates. Then, indeed, all near-
duplicates are found. The total complexity of all k-
checks is still k · poly(D) due to summation formula
for geometric progressions. Thus, if we denote jx to
be the largest j s.t. the j-th neighbor y of x satisfies
σ(x, y) > T , we obtain the following upper bound on
the running time: poly(D)n log2 n +

∑
x poly(D)jx =

poly(D)(n log2 n+ |Output|). The first item comes from
computing our five basic data structures.

5 The Visibility graph

Assume the layered list L is already constructed. Then
for any object in the dataset we can define its visible
neighbors as follows: for every 0 ≤ i ≤ dlog ne connect
each object p to centers in layer i that are 3D2ri-close
to p. We use term “visible” because a center is visible
if its rankto p is at most 3D2 larger than its radius ri:
The farther you are, the larger radius you need to be
visible.

Theorem 5.1. Out-degrees in visibility graph are at
most O(D4 log n). The greedy walk deterministically
converges to the exact nearest neighbor in at most log n
moves.

Proof. We add links from each point p to those centers
in layer i that are 3D2ri-close to p. By Lemma 2.2
there are at most O(D4) links to the centers in layer
i, and thus the total degree of a point is OO(D4 log n).
Now let us study the greedy walk: at step i we move
from object u∗

i−1 to its visible neighbor u∗
i having the

maximal similarity to q. We stop when all visible
neighbors are worse than the current point. Again, let
x∗

i be the closest to q center in layer i.



Claim rankq(u
∗
i ) ≤ rankq(x

∗
i ) for all i.

Proof. We prove this by induction. Suppose the in-
equality is true for i. Since u∗

i has links to all cen-
ters p in layer i + 1 with ranku∗

i
(p) ≤ 3D2ri+1, it is

enough to show that ranku∗

i
(x∗

i+1) ≤ 3D2ri+1. The later
statement is proven in the same way as rankx∗

i
(x∗

i+1) ≤
3D2ri+1 inequality in Theorem 4.

By claim statement for i = log n, after at most i steps
we reach the nearest neighbor.

6 Directions for Further Work

The combinatorial framework leads to new results that
were not known in other models: subquadratic deter-
ministic detection of near duplicates, short certificates
for being nearest neighbor, generalized analog of Delau-
nay graph. It also leads to new techniques: up-aside-
down-filter trick and false positives in data structures.

The combinatorial framework requires further im-
provement. What if the D in the disorder inequality is
small on average instead of in the worst case? If this
is too restricting, what is the largest fraction of bad
triples we can handle? In some scenarios, not all pairs
are comparable, so for each x, the other n − 1 points
only form a partial order. How should we change our
assumption and algorithms? In general, it is important
to find a combinatorial notion of dimension that is ro-
bust to exceptions and perturbations but still provide
efficient algorithms. When the disorder constant is not
given, can we compute (or at least obtain some proba-
bilistic guarantees) for its value in subquadratic time?
How to handle insertions and deletions, (important for
using visibility graph in network design), and dynami-
cally changing parameters in similarity functions? Re-
call, insertions and deletions can be efficiently supported
in case of small expansion rate [14] or doubling dimen-
sion [25]. We need more experimental work to validate
disorder inequality assumption and get the real-world
performance of our algorithms.

Finally, the combinatorial framework can lead to
further progress on other problems and previously stud-
ied models. Does there exist an analogue of visibility
graph for the datasets with small doubling dimension?
Are there short certificates for being nearest neighbor
in other models? Also can combinatorial and numerical
methods be combined in some useful way? Can other
problems dealing with distances be stated and efficiently
solved in the combinatorial framework? It seems that
for some applications replacing distances by ranks can
be meaningful. In particular, it is interesting to consider
linear arrangement problem [11], closest pairs [15], dis-
tance labelling [32], shortest paths [1], detecting com-
munities [30], and dimensionality reduction [8]. How

our method should be modified for bipartite problems
(like users-ads matching [27]), where similarities are de-
fined only for bichromatic pairs? We conclude with the
following Unification challenge:

Is there a general framework for efficient solutions
to similarity problems that contains both doubling di-
mension and the combinatorial approach as specific sub-
cases?
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A Indyk’s Examples

Small doubling constant but large disorder: A union of
(slightly perturbed) points on a circle, with its center
z. Here, the doubling dimension is constant, while the
disorder dimension is high. Specifically, the two nearest
neighbors x and y of z could be a pair of antipodal
points, but rankx(y) could be very large.

Small disorder but large doubling constant: A set
of n points p1, ..., pn, such that, if i 6= j, d(pi, pj) =
10n + |i− j|. The rankfor ties are broken arbitrarily. It
is not hard to see that i, j, |i−j| ≤ rankpi

(pj) ≤ 2|i−j|,
therefore, the disorder constant is at most 2. However,
note that the points are almost equidistant, in which
case the doubling constant and the expansion rate is
close to n.


