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Abstract. We present an O(mn2n logZ) deterministic algorithm for solving the mean pay-
o� game problem, m and n being respectively the number of arcs and vertices in the game
graph and Z being the maximum weight (we assume that the weights are integer numbers).
The theoretical basis for the algorithm is the potential theory for mean payo� games. This
theory allows to restate the problem in terms of solving systems of algebraic equations with
minima and maxima. Also we use arc reweighting technique to solve the mean payo� game
problem by applying simple modi�cations to the game graph that do not change the set of
winning strategies, obtaining at the end a trivial instance of the problem. We show that any
game graph can be simpli�ed by n reweightings.

1 Introduction
A mean payo� game is a game for two players, Alice and Bob, who move a token along the arcs

of a weighted directed graph. Weights of all arcs are integer numbers. Roughly speaking, Alice wants
to make the sums of the weights of the arcs passed so far tend to 1 whereas Bob wants to make them
tend to �1. The computational problem is to �nd the winner given the game graph G and the starting
vertex u. The exact statement of the problem is given in the Section 2.

This problem has important applications to program veri�cation. More precisely, the problem of
model checking for modal �-calculus reduces to the mean payo� game problem [12]. The mean payo�
game problem is also interesting from theoretical viewpoint, since it is one of the few problems known
to lie in NP and co-NP, but not known to lie in P so far.

In Section 3 we develop a potential theory for mean payo� games. The key idea is to assign to each
vertex a pair of numbers called potentials. We give a game theoretical interpretation for potentials and
exhibit a system of equations that determines them in a unique way. Also we explain how to obtain a
winning strategy from the system of potentials.

In Section 4 we present an O(mn2n logZ) deterministic algorithm, which computes the system of
potentials for a given graph, m and n being respectively the number of arcs and vertices in the game
graph and Z being the maximum weight (all weights are integer numbers). The key idea is to use induc-
tion on vertices: Choose one vertex and remove it from the graph, compute the system of potentials for
the reduced graph, and reinsert the removed vertex in the graph, computing both of its potentials using
other potentials. Not all vertices can be removed in this way; if the process fails we try another vertex.

In Section 5 we describe a graph modi�cation approach, which is based on the idea of reweight-
ing. This idea was previously used to solve the assignment problem [13] and to �nd an optimal arbores-
cence [3]. The key idea is to apply simple modi�cations to the game graph that do not change the set of
winning strategies, obtaining at the end a trivial instance of the problem. We show that n reweightings
are su�cient.

Related research. Mean payo� games were introduced in [4]. The survey [11] is an excellent intro-
duction to the �eld. The idea of potentials goes back to Gallai [6]. A modern exposition can be found
in [7]. Jurdzi�nski introduced potentials for parity games in [9] while Bj�orklund, Sandberg, and Vorobyov
introduced potentials for mean payo� games in [2] and used them in their randomized 2O(

p
n logn) al-

gorithm. Our potentials are similar to theirs, although the details are di�erent. A trivial deterministic
O(nn) algorithm is a consequence of memoryless determinacy theorem proved in [4]. Several di�erent
pseudopolynomial algorithms are studied in [5, 15, 16].

2 Preliminaries
De�nition. A sink is a vertex without outgoing arcs.
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De�nition. A mean payo� game is a triple (G;A;B), where G is a weighted directed graph without
sinks. Weights of all arcs are integer numbers. Each vertex of the graph belongs to exactly one player:
A is the set of Alice's vertices and B is the set of Bob's vertices.

A position in the game is a vertex called the current vertex. At the beginning of the game the
current vertex is set to some given vertex u. At each turn the owner of the current vertex chooses one
outgoing arc of this vertex and moves the current vertex to the tip of this arc. The game is in�nite, i.e.,
it does not terminate.

Alice's goal is to make the value lim infn!1 zn as large as possible whereas Bob's goal is to make
the value lim supn!1 zn as small as possible. Here zn is the average weight of the �rst n arcs passed
during the game. We discuss later the exact rules that determine the winner.

De�nition. A positional strategy of Alice is a map f from the set A to the set of graph's arcs such that
the arc f(u) has u as its starting vertex. A positional strategy of Bob is de�ned in a similar way.

Note that positional strategies are di�erent from generic strategies, since a generic strategy depends
on the current vertex and the history of the game (i.e., the arcs passed so far), whereas a positional
strategy depends only on the current vertex.

The following theorem proved in [1] states that the mean payo� game has a saddle point.

Determinacy theorem. For each vertex u, there is a number v(u) called the game value for the ver-
tex u such that Alice has a positional strategy allowing her to make lim infn!1 zn � v(u) whenever
the game starts at the vertex u no matter what generic strategy Bob chooses and Bob has a positional
strategy allowing him to make lim supn!1 zn � v(u) whenever the game starts at the vertex u no matter
what generic strategy Alice chooses.

Computational problems around mean payo� games. The initial computational problem is to
�nd the game value v(u) for given vertex u and a winning positional strategy for each player as de�ned
below. A simpler problem is to determine the set of vertices that satisfy the condition v(u) > 0, pro-
vided that the game graph does not have simple cycles of length 0. The length of a cycle is the sum
of weights of its arcs. We now reduce the former problem to the latter in logZ steps, where Z is the
maximum absolute value of arcs' weights. Recall that all weights are integer numbers. Sections 3, 4, and
5 are devoted to the solution of the latter problem. The algorithm for the reduced problem works with
arbitrary real weights.

Theorem. The game value for any vertex is a rational number with the denominator at most n and the
absolute value at most Z.

Proof. Consider a spanning subgraph H induced by a pair of positional winning strategies; each vertex
of this graph has out-degree 1 and each connected component consists of a simple cycle with directed
trees attached to it, like these:

It remains to note that the game values of all vertices of a connected component are equal to the
average weight of the cycle of this component.

A simple but somewhat technical binary search completes the reduction. The necessary details are
exhibited in [14]. The key idea is that two di�erent rational numbers with denominators not exceeding n
di�er at least by 1=n(n � 1). To determine whether v(u) > r we subtract r from all weights and check
whether v(u) > 0 in the new graph using our algorithm. A subtle technicality here is that we must
guarantee the absence of simple cycles of length 0 in the new graph, since this is a necessary precondition
for our algorithm. There are several ways to tackle this problem. The simplest is as follows. Since our
algorithm works with arbitrary real weights, we can add a very small number � > 0 to all weights not
changing the set of vertices with nonnegative game values. In practice we do not add anything but when-
ever we encounter a sum of weights that equals 0 we treat it as a positive number. Another possibility
is to always choose r in such a way that it is an irreducible fraction with denominator at least n+ 1.
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For the rest of the paper we assume that the weights of the arcs are arbitrary real numbers and the
graph does not contain simple cycles of length 0. The last statement is a necessary assumption for most
of the theorems of the next section, since otherwise we have to deal with degenerate cases like ties.

We develop an algorithm for the following problem: Given a game graph without simple cycles of
length 0 �nd all vertices with a positive game value. Note that in this problem the values of all vertices
are either positive or negative, since absence of cycles of length 0 implies absence of vertices with value 0.
Our algorithm uses only addition and comparison of weights.

Denote by yn the sum of the weights of the �rst n arcs passed in the game. If v(u) > 0, then
limn!1 yn = 1; otherwise v(u) < 0 and limn!1 yn = �1. The converse is also true: If Alice chooses
a generic strategy such that limn!1 yn =1 whatever generic strategy Bob chooses, then v(u) � 0 and,
therefore, v(u) > 0; a similar assertion holds for Bob. Here we have used the fact that v(u) 6= 0.

We use the following formulation of the problem as the starting point for the theory developed in
the next section: Two players move the token by the rules of the mean payo� game. Alice wins the
game if yn !1, Bob wins the game if yn ! �1. We proved in the previous paragraph that one of the
players can win the game, i.e., there are no ties.

3 Potential theory for the mean payo� game
In this section we give exact de�nition of potentials, show how to obtain a winning set and a winning

strategy for each player, and exhibit a system of equations such that its unique solution is the system
of potentials. We give necessary and su�cient conditions needed to remove a vertex or an arc from the
graph without changing the system of potentials.
De�nition. Suppose the game starts at the vertex u. Consider a generic strategy for Alice such that
yn + p � 0 for some number p no matter what generic strategy Bob chooses. The in�mum of all such p
through all strategies of Alice is called the potential of Alice at the vertex u and is denoted by a(u). If
no such p exists, we set a(u) =1. Consider a generic strategy for Bob such that �yn + p � 0 for some
number p no matter what generic strategy Alice chooses. The in�mum of all such p through all strategies
of Bob is called the potential of Bob at the vertex u and is denoted by b(u). If no such p exists, we let
b(u) =1.

An ordered pair consisting of potentials of Alice and Bob is called the system of potentials.
By de�nition a potential is either a nonnegative real number or an in�nity.

Finiteness theorem. Exactly one of the following conditions holds for each vertex u:
� The vertex u is winning for Alice, 0 � a(u) <1, and b(u) =1.
� The vertex u is winning for Bob, a(u) =1, and 0 � b(u) <1.

Proof. Suppose that the vertex u is winning for Alice. Then she can make limn!1 yn =1; this implies
that b(u) =1.

To prove that a(u) is �nite, choose any winning strategy for Alice and remove all arcs starting in
Alice's vertex and not used in the strategy. The resulting graph does not have cycles of negative length
that are reachable from the vertex u, since otherwise Bob can win the game. Thus we can assume that
the game terminates when we encounter any vertex for the second time, since such operation does not
change the minimum of yn. Since there is only a �nite number of such games, yn is bounded from below
for all strategies of Bob, therefore a(u) is �nite.

The second case is proved by the same argument.
We proceed to the game theoretical interpretation of the potentials. Imagine that there is some

initial amount r of prize money. The weights of the arcs passed so far are added to this amount. Thus
w dollars are put on the balance if w > 0 or �w dollars are taken from the balance if w < 0. The
potential p of Alice at the vertex u in this interpretation is characterized by the following condition: If
r > p, then Alice can play in such a way that the balance is always positive during the game; if r < p,
then Bob can play in such a way that the balance becomes negative at least once during the game. Bob's
potential q is characterized in the similar way: if we put �r dollars on the balance at the beginning of
the game, Bob can maintain negative balance whenever r > q; if however r < q, then Alice can make the
balance positive at least once.

We prove later that Alice has a positional strategy that allows her to maintain nonnegative balance
throughout the game if the balance at the beginning of the game is equal to her potential at the starting
vertex. Such a strategy is called an optimal strategy.

Our de�nition of potentials was nonconstructive; now we exhibit explicit equations for the poten-
tials.
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Main theorem. The following system of equations has exactly one solution. This solution is equal to
the system of potentials.

a(u) =
�

min max(0; a(v)� w); if the vertex u belongs to Alice;
max max(0; a(v)� w); if the vertex u belongs to Bob. (1)

Here the outer minimum and maximum are taken over all outgoing arcs of the vertex u and w denotes
the weight of the arc u ! v. The formulae for Bob potentials are the same except that the weights of
the arcs are negated:

b(u) =
�

min max(0; b(v) + w); if the vertex u belongs to Bob;
max max(0; b(v) + w); if the vertex u belongs to Alice. (2)

The last equation is a non-degeneracy condition:

Exactly one of the numbers a(u) and b(u) is �nite. (3)

Proof of existence. We prove that the potentials of Alice and Bob satisfy equations (1{3).
If the only outgoing arc of the vertex u is the arc u! v of weight w, then a(u) = max(0; a(v)�w).
Suppose the vertex u belongs to Alice and has several outgoing arcs. Denote by p the minimum of

the value max(0; a(v)�w) over all outgoing arcs of the vertex u. Obviously, p dollars are enough to win
the game that starts at the vertex u, since Alice can choose the arc that attains the minimum; hence
a(u) � p. On the other hand, Alice needs at least p dollars to win the game that starts at the vertex u,
since whatever arc she chooses at the �rst turn, max(0; a(v) � w) � p; thus p � a(u). We immediately
obtain that a(u) = p. Using similar arguments when the vertex u belongs to Bob, we obtain equation (1).

Using similar arguments when the vertex u belongs to Bob, we obtain equation (2).
The condition (3), which follows from Finiteness Theorem, is needed to eliminate degenerate solu-

tions; for example, we can set all a(u) and b(u) to 1 without violating equations (1{2).

Proof of uniqueness. Suppose that �a and �b satisfy equations (1{3); we prove that �a(u) and �b(u) are the
potentials of the vertex u. For the sake of being de�nite we assume that �a(u) 6=1 and �b(u) =1. The
other case �a(u) =1 and �b(u) 6=1 is treated in the similar way. Note that the formulae (1{2) guarantee
that �a(u) and �b(u) are nonnegative.

Denote by f the balance of the game. Denote by v the current vertex. We prove that Alice can
choose a positional strategy in such a way that the value of f � �a(v) does not decrease during the game
no matter what generic strategy Bob chooses. Moreover, Bob can choose a positional strategy in such
a way that the same value does not increase during the game no matter what generic strategy Alice
chooses until a vertex u such that �a(u) = 0 is encountered. Note that the statement is asymmetric with
respect to Alice and Bob due to the last condition.

For her positional strategy Alice chooses arcs that give the minimum value in equation (1) whereas
Bob chooses arcs that give the maximum value in the same equation.

First we prove the former statement. Suppose that Alice moves the token along the arc u ! v of
weight w. Then �a(u) = max(0; �a(v) � w) due to the choice of the strategy, therefore �a(u) � �a(v) � w.
Hence f + w � �a(v) � f � �a(u). If Bob moves the token along the arc u ! v of weight w, then �a(u) �
max(0; �a(v)� w) � �a(v)� w and the same argument applies.

The latter statement is proved in a similar way. Suppose that Alice moves the token along the
arc u ! v of weight w. We can assume that �a(u) 6= 0. Then 0 < �a(u) � max(0; �a(v) � w) = �a(v) � w,
therefore �a(u) � �a(v)�w. Hence f +w � �a(v) � f � �a(u). If Bob moves the token along the arc u! v
of weight w, then �a(u) = max(0; �a(v) � w) = �a(v) � w due to the choice of the strategy and the same
argument applies.

To complete the proof of uniqueness it remains to show the following. Suppose that the game starts
at the vertex u with the balance r. If r > �a(u) then Alice can choose her strategy in such a way that the
balance always stays positive no matter what generic strategy Bob chooses. If r < �a(u) then Bob can
choose his strategy in such a way that the balance becomes negative at least once.

The �rst statement follows immediately from what we proved above, since Alice can choose her
strategy in such a way that f � �a(u) does not decrease and, therefore, stays positive during the game.
Since �a(u) � 0, the balance is always positive.

To prove the second statement we note that Bob can choose his strategy in such a way that f � �a(u)
does not increase (and, therefore, stays negative) until a vertex v with �a(v) = 0 is encountered. If this
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is the case, then from f � �a(v) < 0 and �a(v) = 0 we infer that f < 0. If, however, we do not encounter
a vertex v such that a(v) = 0 then the game lasts inde�nitely and we encounter in�nitely many simple
cycles during the game. Each of these cycles has negative length, since the value of f � �a(v) does not in-
crease and the game graph does not have cycles of length 0. Since there is only a �nite number of simple
cycles in the graph, their length is bounded from above by a negative number. Hence f � �a(v) ! �1
and, therefore, f ! �1.

This theorem yields us an easy way to check whether a given set of values is the system of potentials.
Indeed, it su�ces to check whether equations (1{3) are satis�ed.

Note that the theorem is wrong when we allow cycles of length 0. For example, if the game graph is
a simple cycle of length 0, then adding the same value to all potentials of Alice and Bob does not a�ect
the validity of equations (1{3).

Special properties of potentials. The arcs at which the �nite minimum or the �nite maximum in
equations (1{2) is attained are called hot arcs. By de�nition, each vertex has at least one hot outgoing
arc.

Restriction theorem. Suppose H is a subgraph of the graph G. (A subgraph is obtained by removing
some vertices and some arcs from the graph.) The system of potentials for the graph H is a restriction
of the system of potentials for the graph G if and only if each vertex of H has at least one outgoing arc
(belonging to H) that is hot in the graph G.

Proof. Substituting the original potentials in equations (1{2) for the graph H yields true statements if
and only if the minima and maxima stay the same. This is true if and only if each vertex of H has at
least one outgoing arc that is hot in the graph G.

This theorem immediately yields a number of interesting consequences.
An arc is called critical if the system of potentials changes after removing this arc from the graph

or if this arc is the only outgoing arc of its starting vertex.

Arc removing theorem. An arc a = u! v is critical if and only if it is the only hot outgoing arc of
the vertex u.

For the sake of brevity the system of potentials for the subgraph induced by the set of vertices W
is called the system of potentials for the set W .

Vertex restriction theorem. Suppose W is a set of vertices such that each vertex in W has at least
one hot outgoing arc ending in W ; then the system of potentials for the set W is obtained by restricting
the original system of potentials to the set W . The converse is also true.

A vertex is called critical if at least one potential changes after removal of this vertex from the
graph.

Vertex removing theorem. A vertex is critical if and only if it has entering critical arcs apart from
self-loops.

Strategy theorem. A positional strategy is optimal if and only if all its arcs are hot. Therefore, each
player has an optimal strategy, which is winning for him on his winning set.

Proof. Apply Restriction Theorem to the subgraph obtained by removing arcs that are not used in the
strategy.

Zero theorem. If a(u) 6=1 for some u, then a(v) = 0 for some v. The same statement holds for b.

Proof. Without loss of generality assume that all potentials of Alice are �nite, applying if necessary
Restriction Theorem. Each vertex has at least one hot outgoing arc, hence we have at least one simple
cycle consisting entirely of hot arcs. If all potentials of Alice are positive, the relation a(u) = a(v) � w
holds for each hot arc u! v. Summing the last relation over all arcs of the cycle de�ned above we obtain
that the length of this cycle is equal to 0. This leads us to a contradiction.

4 The algorithm
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Informal ideas. The key idea of our algorithm is to compute the system of potentials for the graph G
using the systems of potentials for the graphs of the form G n fug, where u is an arbitrary vertex of the
graph.

Consider a spanning subgraph H induced by a �xed pair of optimal positional strategies; each ver-
tex of this graph has out-degree 1 and each connected component consists of a cycle with directed trees
attached to it. (This graph is used to justify the algorithm and is not constructed during the actual
computation.) Suppose we remove from the graph G a vertex u of in-degree 0 in H. By Vertex Remov-
ing Theorem the potentials of the other vertices do not change. We can use equations (1{2) to compute
the potential of the vertex u if the potentials of all other vertices are known. Hence we need not know
whether the removed vertex u has in-degree 0, since at the time of reinsertion of the vertex u in the
graph we compute its potentials and check whether the resulting set of values is the potential system.
Therefore, we try each vertex in turn and see whether we succeed with it.

If we try each vertex and do not obtain a feasible solution, then H consists entirely of cycles. By
zero theorem at least one of the potentials of Alice or Bob is equal to 0. For the sake of being de�nite
we assume that a(u) = 0; this implies that b(u) =1. If we replace all outgoing arcs of the vertex u by
a self-loop of weight 1, then the system of potentials does not change; this operation, however, breaks
one cycle. Again, we need not know whether a(u) = 0; after computing the system of potentials for the
modi�ed graph we check whether these potentials are suitable for the original graph; in case of a failure
we try another vertex in place of u.

In most of the cases we proceed with removing a vertex of in-degree 0 in H. The only exception to
this rule is a situation when the vertex u is isolated in the graph H. In this case we remove this vertex,
compute the system of potentials for the remaining graph, and reinsert u by the method described above.
If the reinsertion process fails, we try another vertex in place of u.

Formal description of the algorithm. Suppose that all outgoing arcs of the vertex u are removed
and a new self-loop of weight 1 (respectively �1) is added to the vertex u; then the system of poten-
tials for the set W is called the system of potentials for the set W with the vertex u marked for Alice
(respectively Bob).

Now we describe our algorithm in a more detailed and formalized way. For each set of vertices W
we compute the system of potentials for the set W possibly with one of its vertices marked for one of
the players; this is done in the following way:
(0) If W = ;, then the system of potentials is empty.
(1) To compute the system of potentials for the set W with vertex u marked for the player X do the

following.
(a) At this step we assume that the vertex u is isolated. Set the potential of the player X at the

vertex u to 0, the potential of its opponent at the same vertex to 1, and the potentials of the
other vertices to the potentials for the set W n fug. If the resulting set of values is the system
of potentials, store it; otherwise go to step (b).

(b) At this step we assume that the vertex u is not isolated. For each vertex v 6= u do the following.
Set the potential of all vertices except v to the potentials for the set W n fvg with the vertex u
marked for the player X. Compute the potentials of the vertex v using formulae (1{2). If the
resulting set of values is the system of potentials, store it and end the loop; otherwise proceed
with the next vertex v. At least one vertex v has in-degree 0 in the graph H; this vertex is
noncritical and can be removed from the graph, thereby giving us at least one solution.

(2) To compute the system of potentials for the set W we iterate over all vertices u, and check whether
the system of potentials for the set W with the vertex u marked for Alice or Bob is the system of
potentials for the original graph. At least one of these systems is feasible.

Careful implementation of this approach yields worst case running time O(mn2n), where m is the
number of the arcs and n is the number of the vertices.

5 Arc reweighting

In this section we describe another approach for solving the mean payo� game problem. The key
idea is to modify the graph by a sequence of simple operations that do not change the set of winning
strategies, obtaining at the end a trivial instance of the problem. The same approach is used in the
Hungarian algorithm for the assignment problem [13] and in an algorithm for constructing the shortest
arborescence [3].
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The basic operation is arc reweighting, which is de�ned in the following way: add d to the weights
of all outgoing arcs of the vertex u and subtract d from the weights of all entering arcs of this vertex.
Here u and d are the parameters of the operation.

Note that arc reweighting does not change the set of winning strategies, although it may change the
system of potentials.

Denote the winning sets of Alice and Bob by U and V . The game graph is called trivial if the
following conditions are satis�ed:
� At least one outgoing arc of any Alice's vertex in U is nonnegative and ends in U .
� All outgoing arcs of any Bob's vertex in U are nonnegative and end in U .
� At least one outgoing arc of any Bob's vertex in V is nonpositive and ends in V .
� All outgoing arcs of any Alice's vertex in V are nonpositive and end in V .

Note that all potentials of a trivial graph are equal to 0 or 1; this follows from equations (1{2). If
we know the winning sets, then we can compute the system of potentials easily, since a(u) = 0 if and
only if the vertex u is winning for Alice.

Theorem. We can recognize trivial graphs and �nd their winning sets in O(m) time, where m is the
number of the arcs in the graph.

Proof. Suppose that the vertex u belongs to Alice and has at least one positive outgoing arc. Then
u 2 U . On the other hand, if all outgoing arcs of the vertex u are negative, then u 2 V ; otherwise we can
remove all negative outgoing arcs of the vertex u from the graph, since Alice cannot use them anyway
in her optimal strategy. Thus we assume that all outgoing arcs of Alice's vertex that is not assigned to
the sets U and V have weight 0. In the same way we assign several Bob's vertices to the sets U and V ,
making the weights of all outgoing arcs of the other vertices equal to 0.

Now perform a depth-�rst search using the following rules: If the vertex u has at least one outgoing
arc ending in the winning set of its owner, then this vertex belongs to his winning set; if all outgoing arcs
of the vertex u end in the winning set of the other player, then this vertex belongs to his winning set.

Suppose we cannot apply this rule any more; denote by W the set of the remaining vertices. Any
arc starting in W has weight 0. The subgraph induced by the set W is acyclic and has a sink if W 6= ;.
This sink was classi�ed as winning for one of the players by the depth-�rst search. Therefore, W = ;.
At the end of the algorithm we check the validity of the resulting system of potentials and if it is not
valid, then the graph is not trivial.

Theorem. There exists a sequence of reweightings turning a given graph into a trivial one.

Proof. Apply arc reweighting to each vertex u with the parameter a(u) if a(u) 6=1 or with the param-
eter �b(u) if b(u) 6=1. Equations (1{3) are easily veri�ed.

Note that n simple operations are enough to reduce our problem to the trivial case.

6 Conclusion and open problems
We de�ned the system of potentials, showed how to obtain a winning set and a winning strategy

for each player from the system of potentials, and exhibited a system of equations such that its unique
solution is the system of potentials.

We constructed an O(mn2n) deterministic algorithm, which computes the system of potentials for a
given graph. The idea of the algorithm is to compute the system of potentials for the whole graph from
the system of potentials for one of its subgraphs. This algorithm yields an O(mn2n logZ) deterministic
algorithm for the mean payo� game problem.

We introduced a reweighting operation, which modi�es the game graph preserving the set of winning
strategies. We proved the existence of a short sequence of reweightings that reduced a given graph to a
trivial graph. The proof was non-constructive.

Our algorithm shows that induction on vertices is applicable to the mean payo� game problem, thus
generalizing in some sense the approach suggested in [10].

Potentials seem to play a crucial rôle in most of the current approaches to the problem, hence it is
important to understand them well. We showed di�erent ways such as game theoretical interpretation,
algebraic min-max equations, and reweightings leading to one and the same notion.

Open problems. The main open problem in the area is to construct a polynomial time algorithm for
the mean payo� game problem. Since the problem lies in NP and co-NP it is likely that such algorithm
exists. An intermediate step to this goal is to develop an O(2

p
n) deterministic algorithm.
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We conjecture that there is a polynomial Turing reduction from the problem of potential computing
to the problem of computing winning sets. In other words, can we compute potentials e�ectively if we
can compute the winning sets e�ectively?

We conjecture that there is an e�ective way to �nd a sequence of reweightings that reduces a given
graph to the trivial case, like in [13, 3]. We ask for new invariant operations, more general than reweight-
ing.
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