
Industrial Approach: Obfuscating

Transformations

Yury Lifshits

Steklov Institute of Mathematics, St.Petersburg, Russia
yura@logic.pdmi.ras.ru

Tartu University
17/03/2006

Yury Lifshits (Steklov Inst. of Math) Obfuscating Transformations Tartu’06 1 / 26



Commercial Obfuscators:

Semantic Designs: Thickettm obfuscators
http://www.semanticdesigns.com/Products/Obfuscators/

Zelix Klassmastertm obfuscator
http://www.zelix.com/klassmaster/

PreEmptive: DotObfuscatortm

http://www.preemptive.com/products/dotfuscator/

Only for Java: at least 26 obfuscators
http://dmoz.org/Computers/Programming/Languages/Java/

Development_Tools/Obfuscators/

Yury Lifshits (Steklov Inst. of Math) Obfuscating Transformations Tartu’06 2 / 26

http://www.semanticdesigns.com/Products/Obfuscators/
http://www.zelix.com/klassmaster/
http://www.preemptive.com/products/dotfuscator/
http://dmoz.org/Computers/Programming/Languages/Java/Development_Tools/Obfuscators/
http://dmoz.org/Computers/Programming/Languages/Java/Development_Tools/Obfuscators/


Outline

1 How to Develop an Obfuscator?
Anatomy of Obfuscator
Quality of Obfuscator

2 Library of Obfuscating Transformations
Data Obfuscation
Control Flow Obfuscation
Advanced Techniques

Yury Lifshits (Steklov Inst. of Math) Obfuscating Transformations Tartu’06 3 / 26



Outline

1 How to Develop an Obfuscator?
Anatomy of Obfuscator
Quality of Obfuscator

2 Library of Obfuscating Transformations
Data Obfuscation
Control Flow Obfuscation
Advanced Techniques

Yury Lifshits (Steklov Inst. of Math) Obfuscating Transformations Tartu’06 3 / 26



Outline

1 How to Develop an Obfuscator?
Anatomy of Obfuscator
Quality of Obfuscator

2 Library of Obfuscating Transformations
Data Obfuscation
Control Flow Obfuscation
Advanced Techniques

Yury Lifshits (Steklov Inst. of Math) Obfuscating Transformations Tartu’06 4 / 26



Objectives of Obfuscator

Obfuscator
Program P

clear

Obfuscated O(P)

not understandable

Objectives:

Make automated analysis difficult

Make code more complicated

Make decompilation & reverse engineering difficult

Make code not readable by human

Yury Lifshits (Steklov Inst. of Math) Obfuscating Transformations Tartu’06 5 / 26



Objectives of Obfuscator

Obfuscator
Program P

clear

Obfuscated O(P)

not understandable

Objectives:

Make automated analysis difficult

Make code more complicated

Make decompilation & reverse engineering difficult

Make code not readable by human

Yury Lifshits (Steklov Inst. of Math) Obfuscating Transformations Tartu’06 5 / 26



Objectives of Obfuscator

Obfuscator
Program P

clear

Obfuscated O(P)

not understandable

Objectives:

Make automated analysis difficult

Make code more complicated

Make decompilation & reverse engineering difficult

Make code not readable by human

Yury Lifshits (Steklov Inst. of Math) Obfuscating Transformations Tartu’06 5 / 26



Objectives of Obfuscator

Obfuscator
Program P

clear

Obfuscated O(P)

not understandable

Objectives:

Make automated analysis difficult

Make code more complicated

Make decompilation & reverse engineering difficult

Make code not readable by human

Yury Lifshits (Steklov Inst. of Math) Obfuscating Transformations Tartu’06 5 / 26



Anatomy of Obfuscator (1)

How real obfuscator works?

1 Prepares program to be obfuscated

2 Makes a single transformation

3 Repeats step 2 until task completed or constraints exceeded

Yury Lifshits (Steklov Inst. of Math) Obfuscating Transformations Tartu’06 6 / 26



Anatomy of Obfuscator (1)

How real obfuscator works?

1 Prepares program to be obfuscated

2 Makes a single transformation

3 Repeats step 2 until task completed or constraints exceeded

Yury Lifshits (Steklov Inst. of Math) Obfuscating Transformations Tartu’06 6 / 26



Anatomy of Obfuscator (1)

How real obfuscator works?

1 Prepares program to be obfuscated

2 Makes a single transformation

3 Repeats step 2 until task completed or constraints exceeded

Yury Lifshits (Steklov Inst. of Math) Obfuscating Transformations Tartu’06 6 / 26



Anatomy of Obfuscator (1)

How real obfuscator works?

1 Prepares program to be obfuscated

2 Makes a single transformation

3 Repeats step 2 until task completed or constraints exceeded

Yury Lifshits (Steklov Inst. of Math) Obfuscating Transformations Tartu’06 6 / 26



Anatomy of Obfuscator (2)

The workflow of obfuscator:

Parse input program

Makes a list of obfuscation candidates: classes, variables, methods
Constructs internal representation of the program (e.g. control flow
and basic blocks)

Makes some appropriateness suggestions

Main while loop (until constraints are exceeded or quality is
achieved)

Choose next (by priority) element of the program to be obfuscated
Implement appropriate obfuscating transformation (from obfuscator
library)

Update internal representation

Yury Lifshits (Steklov Inst. of Math) Obfuscating Transformations Tartu’06 7 / 26



Anatomy of Obfuscator (2)

The workflow of obfuscator:

Parse input program
Makes a list of obfuscation candidates: classes, variables, methods

Constructs internal representation of the program (e.g. control flow
and basic blocks)

Makes some appropriateness suggestions

Main while loop (until constraints are exceeded or quality is
achieved)

Choose next (by priority) element of the program to be obfuscated
Implement appropriate obfuscating transformation (from obfuscator
library)

Update internal representation

Yury Lifshits (Steklov Inst. of Math) Obfuscating Transformations Tartu’06 7 / 26



Anatomy of Obfuscator (2)

The workflow of obfuscator:

Parse input program
Makes a list of obfuscation candidates: classes, variables, methods
Constructs internal representation of the program (e.g. control flow
and basic blocks)

Makes some appropriateness suggestions

Main while loop (until constraints are exceeded or quality is
achieved)

Choose next (by priority) element of the program to be obfuscated
Implement appropriate obfuscating transformation (from obfuscator
library)

Update internal representation

Yury Lifshits (Steklov Inst. of Math) Obfuscating Transformations Tartu’06 7 / 26



Anatomy of Obfuscator (2)

The workflow of obfuscator:

Parse input program
Makes a list of obfuscation candidates: classes, variables, methods
Constructs internal representation of the program (e.g. control flow
and basic blocks)

Makes some appropriateness suggestions

Main while loop (until constraints are exceeded or quality is
achieved)

Choose next (by priority) element of the program to be obfuscated
Implement appropriate obfuscating transformation (from obfuscator
library)

Update internal representation

Yury Lifshits (Steklov Inst. of Math) Obfuscating Transformations Tartu’06 7 / 26



Anatomy of Obfuscator (2)

The workflow of obfuscator:

Parse input program
Makes a list of obfuscation candidates: classes, variables, methods
Constructs internal representation of the program (e.g. control flow
and basic blocks)

Makes some appropriateness suggestions

Main while loop (until constraints are exceeded or quality is
achieved)

Choose next (by priority) element of the program to be obfuscated
Implement appropriate obfuscating transformation (from obfuscator
library)

Update internal representation

Yury Lifshits (Steklov Inst. of Math) Obfuscating Transformations Tartu’06 7 / 26



Anatomy of Obfuscator (2)

The workflow of obfuscator:

Parse input program
Makes a list of obfuscation candidates: classes, variables, methods
Constructs internal representation of the program (e.g. control flow
and basic blocks)

Makes some appropriateness suggestions

Main while loop (until constraints are exceeded or quality is
achieved)

Choose next (by priority) element of the program to be obfuscated

Implement appropriate obfuscating transformation (from obfuscator
library)

Update internal representation

Yury Lifshits (Steklov Inst. of Math) Obfuscating Transformations Tartu’06 7 / 26



Anatomy of Obfuscator (2)

The workflow of obfuscator:

Parse input program
Makes a list of obfuscation candidates: classes, variables, methods
Constructs internal representation of the program (e.g. control flow
and basic blocks)

Makes some appropriateness suggestions

Main while loop (until constraints are exceeded or quality is
achieved)

Choose next (by priority) element of the program to be obfuscated
Implement appropriate obfuscating transformation (from obfuscator
library)

Update internal representation

Yury Lifshits (Steklov Inst. of Math) Obfuscating Transformations Tartu’06 7 / 26



Anatomy of Obfuscator (2)

The workflow of obfuscator:

Parse input program
Makes a list of obfuscation candidates: classes, variables, methods
Constructs internal representation of the program (e.g. control flow
and basic blocks)

Makes some appropriateness suggestions

Main while loop (until constraints are exceeded or quality is
achieved)

Choose next (by priority) element of the program to be obfuscated
Implement appropriate obfuscating transformation (from obfuscator
library)

Update internal representation

Yury Lifshits (Steklov Inst. of Math) Obfuscating Transformations Tartu’06 7 / 26



Quality of Obfuscation

How good is obfuscation? Measures:

Potency
Complexity(O(P))

Complexity(P)

Resilience (irreversibility)
Weak, strong, one-way

Cost
Slowdown, increasing of code size and space requirements

Stealth
How similar are introduced obfuscated constructions to the rest of the code

Yury Lifshits (Steklov Inst. of Math) Obfuscating Transformations Tartu’06 8 / 26



Software Complexity Metrics

How do you define a program code complexity?

Program length
Number of operators and operands

Data flow complexity
Number of inter-block variable references

Cyclomatic complexity
Number of predicates in a function

Nesting complexity
Number of nesting level of conditionals in a program

Data structure complexity
Complexity of the static data structures in the program like variables,

vectors, records

OO Metrics
Level of inheritance, coupling, number of methods triggered by another

method, non-cohesiveness

Yury Lifshits (Steklov Inst. of Math) Obfuscating Transformations Tartu’06 9 / 26



Software Complexity Metrics

How do you define a program code complexity?

Program length

Number of operators and operands

Data flow complexity
Number of inter-block variable references

Cyclomatic complexity
Number of predicates in a function

Nesting complexity
Number of nesting level of conditionals in a program

Data structure complexity
Complexity of the static data structures in the program like variables,

vectors, records

OO Metrics
Level of inheritance, coupling, number of methods triggered by another

method, non-cohesiveness

Yury Lifshits (Steklov Inst. of Math) Obfuscating Transformations Tartu’06 9 / 26



Software Complexity Metrics

How do you define a program code complexity?

Program length
Number of operators and operands

Data flow complexity
Number of inter-block variable references

Cyclomatic complexity
Number of predicates in a function

Nesting complexity
Number of nesting level of conditionals in a program

Data structure complexity
Complexity of the static data structures in the program like variables,

vectors, records

OO Metrics
Level of inheritance, coupling, number of methods triggered by another

method, non-cohesiveness

Yury Lifshits (Steklov Inst. of Math) Obfuscating Transformations Tartu’06 9 / 26



Software Complexity Metrics

How do you define a program code complexity?

Program length
Number of operators and operands

Data flow complexity

Number of inter-block variable references

Cyclomatic complexity
Number of predicates in a function

Nesting complexity
Number of nesting level of conditionals in a program

Data structure complexity
Complexity of the static data structures in the program like variables,

vectors, records

OO Metrics
Level of inheritance, coupling, number of methods triggered by another

method, non-cohesiveness

Yury Lifshits (Steklov Inst. of Math) Obfuscating Transformations Tartu’06 9 / 26



Software Complexity Metrics

How do you define a program code complexity?

Program length
Number of operators and operands

Data flow complexity
Number of inter-block variable references

Cyclomatic complexity
Number of predicates in a function

Nesting complexity
Number of nesting level of conditionals in a program

Data structure complexity
Complexity of the static data structures in the program like variables,

vectors, records

OO Metrics
Level of inheritance, coupling, number of methods triggered by another

method, non-cohesiveness

Yury Lifshits (Steklov Inst. of Math) Obfuscating Transformations Tartu’06 9 / 26



Software Complexity Metrics

How do you define a program code complexity?

Program length
Number of operators and operands

Data flow complexity
Number of inter-block variable references

Cyclomatic complexity

Number of predicates in a function

Nesting complexity
Number of nesting level of conditionals in a program

Data structure complexity
Complexity of the static data structures in the program like variables,

vectors, records

OO Metrics
Level of inheritance, coupling, number of methods triggered by another

method, non-cohesiveness

Yury Lifshits (Steklov Inst. of Math) Obfuscating Transformations Tartu’06 9 / 26



Software Complexity Metrics

How do you define a program code complexity?

Program length
Number of operators and operands

Data flow complexity
Number of inter-block variable references

Cyclomatic complexity
Number of predicates in a function

Nesting complexity
Number of nesting level of conditionals in a program

Data structure complexity
Complexity of the static data structures in the program like variables,

vectors, records

OO Metrics
Level of inheritance, coupling, number of methods triggered by another

method, non-cohesiveness

Yury Lifshits (Steklov Inst. of Math) Obfuscating Transformations Tartu’06 9 / 26



Software Complexity Metrics

How do you define a program code complexity?

Program length
Number of operators and operands

Data flow complexity
Number of inter-block variable references

Cyclomatic complexity
Number of predicates in a function

Nesting complexity

Number of nesting level of conditionals in a program

Data structure complexity
Complexity of the static data structures in the program like variables,

vectors, records

OO Metrics
Level of inheritance, coupling, number of methods triggered by another

method, non-cohesiveness

Yury Lifshits (Steklov Inst. of Math) Obfuscating Transformations Tartu’06 9 / 26



Software Complexity Metrics

How do you define a program code complexity?

Program length
Number of operators and operands

Data flow complexity
Number of inter-block variable references

Cyclomatic complexity
Number of predicates in a function

Nesting complexity
Number of nesting level of conditionals in a program

Data structure complexity
Complexity of the static data structures in the program like variables,

vectors, records

OO Metrics
Level of inheritance, coupling, number of methods triggered by another

method, non-cohesiveness

Yury Lifshits (Steklov Inst. of Math) Obfuscating Transformations Tartu’06 9 / 26



Software Complexity Metrics

How do you define a program code complexity?

Program length
Number of operators and operands

Data flow complexity
Number of inter-block variable references

Cyclomatic complexity
Number of predicates in a function

Nesting complexity
Number of nesting level of conditionals in a program

Data structure complexity

Complexity of the static data structures in the program like variables,
vectors, records

OO Metrics
Level of inheritance, coupling, number of methods triggered by another

method, non-cohesiveness

Yury Lifshits (Steklov Inst. of Math) Obfuscating Transformations Tartu’06 9 / 26



Software Complexity Metrics

How do you define a program code complexity?

Program length
Number of operators and operands

Data flow complexity
Number of inter-block variable references

Cyclomatic complexity
Number of predicates in a function

Nesting complexity
Number of nesting level of conditionals in a program

Data structure complexity
Complexity of the static data structures in the program like variables,

vectors, records

OO Metrics
Level of inheritance, coupling, number of methods triggered by another

method, non-cohesiveness

Yury Lifshits (Steklov Inst. of Math) Obfuscating Transformations Tartu’06 9 / 26



Software Complexity Metrics

How do you define a program code complexity?

Program length
Number of operators and operands

Data flow complexity
Number of inter-block variable references

Cyclomatic complexity
Number of predicates in a function

Nesting complexity
Number of nesting level of conditionals in a program

Data structure complexity
Complexity of the static data structures in the program like variables,

vectors, records

OO Metrics

Level of inheritance, coupling, number of methods triggered by another
method, non-cohesiveness

Yury Lifshits (Steklov Inst. of Math) Obfuscating Transformations Tartu’06 9 / 26



Software Complexity Metrics

How do you define a program code complexity?

Program length
Number of operators and operands

Data flow complexity
Number of inter-block variable references

Cyclomatic complexity
Number of predicates in a function

Nesting complexity
Number of nesting level of conditionals in a program

Data structure complexity
Complexity of the static data structures in the program like variables,

vectors, records

OO Metrics
Level of inheritance, coupling, number of methods triggered by another

method, non-cohesiveness

Yury Lifshits (Steklov Inst. of Math) Obfuscating Transformations Tartu’06 9 / 26



Statistical Metrics

Measuring chaos:

Distribution of opcodes (and any elements of program)

Rare elements contain iformation. Replace them by basic
instructions

Clustering (usage of variables, control flow commands)

Best of all: no clastering, uniform distribution

Code patterns

Destroy long repeating patterns in program

Yury Lifshits (Steklov Inst. of Math) Obfuscating Transformations Tartu’06 10 / 26



Cost Analysis

What do we pay for security?
Costs at creation time

Obfuscation need time!

Costs at transmition time (resulting size)
Inlining library functions may increase size enormously!

Cost at execution time
Checking procedures, dummy code, inlining

Cost by not using efficiency enhancing mechanisms
Caching is rarely possible; losing module structure

Yury Lifshits (Steklov Inst. of Math) Obfuscating Transformations Tartu’06 11 / 26



Cost Analysis

What do we pay for security?
Costs at creation time

Obfuscation need time!

Costs at transmition time (resulting size)
Inlining library functions may increase size enormously!

Cost at execution time
Checking procedures, dummy code, inlining

Cost by not using efficiency enhancing mechanisms
Caching is rarely possible; losing module structure

Yury Lifshits (Steklov Inst. of Math) Obfuscating Transformations Tartu’06 11 / 26



Cost Analysis

What do we pay for security?
Costs at creation time

Obfuscation need time!

Costs at transmition time (resulting size)
Inlining library functions may increase size enormously!

Cost at execution time
Checking procedures, dummy code, inlining

Cost by not using efficiency enhancing mechanisms
Caching is rarely possible; losing module structure

Yury Lifshits (Steklov Inst. of Math) Obfuscating Transformations Tartu’06 11 / 26



Cost Analysis

What do we pay for security?
Costs at creation time

Obfuscation need time!

Costs at transmition time (resulting size)
Inlining library functions may increase size enormously!

Cost at execution time
Checking procedures, dummy code, inlining

Cost by not using efficiency enhancing mechanisms
Caching is rarely possible; losing module structure

Yury Lifshits (Steklov Inst. of Math) Obfuscating Transformations Tartu’06 11 / 26



Outline

1 How to Develop an Obfuscator?
Anatomy of Obfuscator
Quality of Obfuscator

2 Library of Obfuscating Transformations
Data Obfuscation
Control Flow Obfuscation
Advanced Techniques

Yury Lifshits (Steklov Inst. of Math) Obfuscating Transformations Tartu’06 12 / 26



Top Three Methods

Renaming

variables/procedures/classes/methods

Deleting comments and spaces

(destroying layout)

Inserting dead code

Yury Lifshits (Steklov Inst. of Math) Obfuscating Transformations Tartu’06 13 / 26



Data Obfuscation

Any ideas for data obfuscation?

Variable splitting

Scalar/object conversion

Static data to procedure

Change variable lifetime

Split/fold/merge arrays

Change encoding

Merge scalar variables

Yury Lifshits (Steklov Inst. of Math) Obfuscating Transformations Tartu’06 14 / 26



Data Obfuscation

Any ideas for data obfuscation?

Variable splitting

Scalar/object conversion

Static data to procedure

Change variable lifetime

Split/fold/merge arrays

Change encoding

Merge scalar variables

Yury Lifshits (Steklov Inst. of Math) Obfuscating Transformations Tartu’06 14 / 26



Data Obfuscation

Any ideas for data obfuscation?

Variable splitting

Scalar/object conversion

Static data to procedure

Change variable lifetime

Split/fold/merge arrays

Change encoding

Merge scalar variables

Yury Lifshits (Steklov Inst. of Math) Obfuscating Transformations Tartu’06 14 / 26



Data Obfuscation

Any ideas for data obfuscation?

Variable splitting

Scalar/object conversion

Static data to procedure

Change variable lifetime

Split/fold/merge arrays

Change encoding

Merge scalar variables

Yury Lifshits (Steklov Inst. of Math) Obfuscating Transformations Tartu’06 14 / 26



Data Obfuscation

Any ideas for data obfuscation?

Variable splitting

Scalar/object conversion

Static data to procedure

Change variable lifetime

Split/fold/merge arrays

Change encoding

Merge scalar variables

Yury Lifshits (Steklov Inst. of Math) Obfuscating Transformations Tartu’06 14 / 26



Data Obfuscation

Any ideas for data obfuscation?

Variable splitting

Scalar/object conversion

Static data to procedure

Change variable lifetime

Split/fold/merge arrays

Change encoding

Merge scalar variables

Yury Lifshits (Steklov Inst. of Math) Obfuscating Transformations Tartu’06 14 / 26



Data Obfuscation

Any ideas for data obfuscation?

Variable splitting

Scalar/object conversion

Static data to procedure

Change variable lifetime

Split/fold/merge arrays

Change encoding

Merge scalar variables

Yury Lifshits (Steklov Inst. of Math) Obfuscating Transformations Tartu’06 14 / 26



Data Obfuscation

Any ideas for data obfuscation?

Variable splitting

Scalar/object conversion

Static data to procedure

Change variable lifetime

Split/fold/merge arrays

Change encoding

Merge scalar variables

Yury Lifshits (Steklov Inst. of Math) Obfuscating Transformations Tartu’06 14 / 26



Control Flow (1)

Yury Lifshits (Steklov Inst. of Math) Obfuscating Transformations Tartu’06 15 / 26



Control Flow (2)

Compiler theory: program = control flow graph (CFG)

Node = basic block = straight-line piece of code without any
jumps or jump targets

Directed edges = jumps in the control flow

Every block: starts from jump target, ends by jump command

Yury Lifshits (Steklov Inst. of Math) Obfuscating Transformations Tartu’06 16 / 26



Control Flow: Basic Tricks

Any ideas for control flow obfuscation?

Break basic blocks

Inline methods

Outline statements

Unroll loops

Reorder statements

Reorder loops

Yury Lifshits (Steklov Inst. of Math) Obfuscating Transformations Tartu’06 17 / 26



Control Flow: Basic Tricks

Any ideas for control flow obfuscation?

Break basic blocks

Inline methods

Outline statements

Unroll loops

Reorder statements

Reorder loops

Yury Lifshits (Steklov Inst. of Math) Obfuscating Transformations Tartu’06 17 / 26



Control Flow: Basic Tricks

Any ideas for control flow obfuscation?

Break basic blocks

Inline methods

Outline statements

Unroll loops

Reorder statements

Reorder loops

Yury Lifshits (Steklov Inst. of Math) Obfuscating Transformations Tartu’06 17 / 26



Control Flow: Basic Tricks

Any ideas for control flow obfuscation?

Break basic blocks

Inline methods

Outline statements

Unroll loops

Reorder statements

Reorder loops

Yury Lifshits (Steklov Inst. of Math) Obfuscating Transformations Tartu’06 17 / 26



Control Flow: Basic Tricks

Any ideas for control flow obfuscation?

Break basic blocks

Inline methods

Outline statements

Unroll loops

Reorder statements

Reorder loops

Yury Lifshits (Steklov Inst. of Math) Obfuscating Transformations Tartu’06 17 / 26



Control Flow: Basic Tricks

Any ideas for control flow obfuscation?

Break basic blocks

Inline methods

Outline statements

Unroll loops

Reorder statements

Reorder loops

Yury Lifshits (Steklov Inst. of Math) Obfuscating Transformations Tartu’06 17 / 26



Control Flow: Basic Tricks

Any ideas for control flow obfuscation?

Break basic blocks

Inline methods

Outline statements

Unroll loops

Reorder statements

Reorder loops

Yury Lifshits (Steklov Inst. of Math) Obfuscating Transformations Tartu’06 17 / 26



How to Destroy a Control Flow Graph?

1 Write down a list of all basic blocks

2 Split and merge some of them

3 Enumerate them

4 Replace all calls by indirect pointing

5 Write a single dispatcher to maintain all control flow

Yury Lifshits (Steklov Inst. of Math) Obfuscating Transformations Tartu’06 18 / 26



Opaque Predicates

How can we use IF operator for obfuscation?

Opaque predicates: every time the same value
Difficult to discover by automatical static analysis

Examples:

((q + q2) mod 2) = 0

((q4) mod 16) = 0 OR ((q4) mod 16) = 1

Yury Lifshits (Steklov Inst. of Math) Obfuscating Transformations Tartu’06 19 / 26



Opaque Predicates

How can we use IF operator for obfuscation?

Opaque predicates: every time the same value
Difficult to discover by automatical static analysis

Examples:

((q + q2) mod 2) = 0

((q4) mod 16) = 0 OR ((q4) mod 16) = 1

Yury Lifshits (Steklov Inst. of Math) Obfuscating Transformations Tartu’06 19 / 26



Functions Unifying

How can we make program procedures indistinguishable?

Idea:

Merge all functions to one

Call universal function with additional parameter

Difficulty: different signatures (input-output specifications)

Solution: unify signatures (in groups)

Yury Lifshits (Steklov Inst. of Math) Obfuscating Transformations Tartu’06 20 / 26



Functions Unifying

How can we make program procedures indistinguishable?

Idea:

Merge all functions to one

Call universal function with additional parameter

Difficulty: different signatures (input-output specifications)

Solution: unify signatures (in groups)

Yury Lifshits (Steklov Inst. of Math) Obfuscating Transformations Tartu’06 20 / 26



Functions Unifying

How can we make program procedures indistinguishable?

Idea:

Merge all functions to one

Call universal function with additional parameter

Difficulty: different signatures (input-output specifications)

Solution: unify signatures (in groups)

Yury Lifshits (Steklov Inst. of Math) Obfuscating Transformations Tartu’06 20 / 26



Functions Unifying

How can we make program procedures indistinguishable?

Idea:

Merge all functions to one

Call universal function with additional parameter

Difficulty: different signatures (input-output specifications)

Solution: unify signatures (in groups)

Yury Lifshits (Steklov Inst. of Math) Obfuscating Transformations Tartu’06 20 / 26



Even more transformations

Question: Can you invent more?

Reuse identifiers

Introduce misleading comments :-)

Modify inheritance relations

Convert static data to procedural data

Store part of the program as a text and interpret it only during
runtime

Remove library calls

Protection aginst specific decompiling tools

Yury Lifshits (Steklov Inst. of Math) Obfuscating Transformations Tartu’06 21 / 26



Even more transformations

Question: Can you invent more?

Reuse identifiers

Introduce misleading comments :-)

Modify inheritance relations

Convert static data to procedural data

Store part of the program as a text and interpret it only during
runtime

Remove library calls

Protection aginst specific decompiling tools

Yury Lifshits (Steklov Inst. of Math) Obfuscating Transformations Tartu’06 21 / 26



Current Techniques: Pro and Contra

Advantages:

4 Easy to implement

4 Universal

4 Good against static
analysis

Disadvantages:

8 No guaranteed security

8 Even no hope for that

8 Weak against dynamic
attacks

Yury Lifshits (Steklov Inst. of Math) Obfuscating Transformations Tartu’06 22 / 26



Current Techniques: Pro and Contra

Advantages:

4 Easy to implement

4 Universal

4 Good against static
analysis

Disadvantages:

8 No guaranteed security

8 Even no hope for that

8 Weak against dynamic
attacks

Yury Lifshits (Steklov Inst. of Math) Obfuscating Transformations Tartu’06 22 / 26



Current Techniques: Pro and Contra

Advantages:

4 Easy to implement

4 Universal

4 Good against static
analysis

Disadvantages:

8 No guaranteed security

8 Even no hope for that

8 Weak against dynamic
attacks

Yury Lifshits (Steklov Inst. of Math) Obfuscating Transformations Tartu’06 22 / 26



Current Techniques: Pro and Contra

Advantages:

4 Easy to implement

4 Universal

4 Good against static
analysis

Disadvantages:

8 No guaranteed security

8 Even no hope for that

8 Weak against dynamic
attacks

Yury Lifshits (Steklov Inst. of Math) Obfuscating Transformations Tartu’06 22 / 26



Current Techniques: Pro and Contra

Advantages:

4 Easy to implement

4 Universal

4 Good against static
analysis

Disadvantages:

8 No guaranteed security

8 Even no hope for that

8 Weak against dynamic
attacks

Yury Lifshits (Steklov Inst. of Math) Obfuscating Transformations Tartu’06 22 / 26



Current Techniques: Pro and Contra

Advantages:

4 Easy to implement

4 Universal

4 Good against static
analysis

Disadvantages:

8 No guaranteed security

8 Even no hope for that

8 Weak against dynamic
attacks

Yury Lifshits (Steklov Inst. of Math) Obfuscating Transformations Tartu’06 22 / 26



Current Techniques: Pro and Contra

Advantages:

4 Easy to implement

4 Universal

4 Good against static
analysis

Disadvantages:

8 No guaranteed security

8 Even no hope for that

8 Weak against dynamic
attacks

Yury Lifshits (Steklov Inst. of Math) Obfuscating Transformations Tartu’06 22 / 26



Current Techniques: Pro and Contra

Advantages:

4 Easy to implement

4 Universal

4 Good against static
analysis

Disadvantages:

8 No guaranteed security

8 Even no hope for that

8 Weak against dynamic
attacks

Yury Lifshits (Steklov Inst. of Math) Obfuscating Transformations Tartu’06 22 / 26



Current Techniques: Pro and Contra

Advantages:

4 Easy to implement

4 Universal

4 Good against static
analysis

Disadvantages:

8 No guaranteed security

8 Even no hope for that

8 Weak against dynamic
attacks

Yury Lifshits (Steklov Inst. of Math) Obfuscating Transformations Tartu’06 22 / 26



Summary

Main points:

Obfuscator workflow: parse the program; apply transformations
until the cost is exceeded

Obfuscating transformations consist of layout, data and control
tricks

Hardness of deobfuscation is not proved

Yury Lifshits (Steklov Inst. of Math) Obfuscating Transformations Tartu’06 23 / 26



Summary

Main points:

Obfuscator workflow: parse the program; apply transformations
until the cost is exceeded

Obfuscating transformations consist of layout, data and control
tricks

Hardness of deobfuscation is not proved

Yury Lifshits (Steklov Inst. of Math) Obfuscating Transformations Tartu’06 23 / 26



Summary

Main points:

Obfuscator workflow: parse the program; apply transformations
until the cost is exceeded

Obfuscating transformations consist of layout, data and control
tricks

Hardness of deobfuscation is not proved

Yury Lifshits (Steklov Inst. of Math) Obfuscating Transformations Tartu’06 23 / 26



Course Conclusion

Why programming people like code obfuscation so much?

Programming: CONSTRUCTIVE process

Obfuscation: DESTRUCTIVE process

Yury Lifshits (Steklov Inst. of Math) Obfuscating Transformations Tartu’06 24 / 26



Course Conclusion

Why programming people like code obfuscation so much?

Programming: CONSTRUCTIVE process

Obfuscation: DESTRUCTIVE process

Yury Lifshits (Steklov Inst. of Math) Obfuscating Transformations Tartu’06 24 / 26



Reading List

C. Collberg, C. Thomborson, D. Low
A taxonomy of obfuscating transformations, 1997.
http://www.cs.arizona.edu/people/collberg/Research/Publications/

CollbergThomborsonLow97a/A4.ps.

C. Collberg, C. Thomborson, D. Low
Breaking abstractions and unstructuring data structures, 1998.
http://www.cs.arizona.edu/~collberg/Research/Publications/

CollbergThomborsonLow98b/LETTER.ps.

S. Chow, Y. Gu, H. Johnson, V. Zakharov
An approach to the obfuscation of control-flow of sequential computer programs, 1998.
http://www.ispras.ru/groups/dma/downloads/Malaga2.zip.

M.Mambo, T. Murayama, E.Okamoto
A tentative approach to constructing tamper-resistant software, 1998.
http://web.yl.is.s.u-tokyo.ac.jp/~cocoa/reading/archive/p23-mambo.pdf.

C. Linn, S. Debray
Obfuscation of executable code to improve resistance to static disassembly, 2003.
http://www.cs.arizona.edu/~linnc/research/CCS2003.pdf.

Thanks for attention. Questions?
Yury Lifshits (Steklov Inst. of Math) Obfuscating Transformations Tartu’06 25 / 26

http://www.cs.arizona.edu/people/collberg/Research/Publications/CollbergThomborsonLow97a/A4.ps
http://www.cs.arizona.edu/people/collberg/Research/Publications/CollbergThomborsonLow97a/A4.ps
http://www.cs.arizona.edu/~collberg/Research/Publications/CollbergThomborsonLow98b/LETTER.ps
http://www.cs.arizona.edu/~collberg/Research/Publications/CollbergThomborsonLow98b/LETTER.ps
http://www.ispras.ru/groups/dma/downloads/Malaga2.zip
http://web.yl.is.s.u-tokyo.ac.jp/~cocoa/reading/archive/p23-mambo.pdf
http://www.cs.arizona.edu/~linnc/research/CCS2003.pdf


Course Feedback

1 Comments/suggestions on contents:

Choice of topics? Ratio of theoretical/practical?

2 Comments/suggestions on presentation aspects:

Your opinion on slides? Black board explanation? Language
mistakes?

3 Comments/suggestions on technical aspects:

Timetable of the course? Webpage? Room? Announcement?

4 Main advantage of the course (if any)?

Best lecture in your opinion?

5 Disatvantages. What and how can be improved?

Yury Lifshits (Steklov Inst. of Math) Obfuscating Transformations Tartu’06 26 / 26


	How to Develop an Obfuscator?
	Anatomy of Obfuscator
	Quality of Obfuscator

	Library of Obfuscating Transformations
	Data Obfuscation
	Control Flow Obfuscation
	Advanced Techniques

	Summary

