Private Circuits

Yury Lifshits

Steklov Institute of Mathematics, St.Petersburg, Russia yura@logic.pdmi.ras.ru

Tartu University 16/03/2006

Private circuits: Definition and Motivation

1 Private circuits: Definition and Motivation

Secret Sharing Construction

Private circuits: Definition and Motivation

Secret Sharing Construction

Fake Chanels Construction

1 Private circuits: Definition and Motivation

Secret Sharing Construction

3 Fake Chanels Construction

Boolean circuits

Who are boolean circuits?

- Input wires
- AND and NOT gates

Boolean circuits

Who are boolean circuits?

- Input wires
- AND and NOT gates
- Random bit gates

Boolean circuits

Who are boolean circuits?

- Input wires
- AND and NOT gates
- Random bit gates
- Sometimes, memory

Security Against Probing Attacks

Adversary is able to listen up to *t* wires

Security Against Probing Attacks

Adversary is able to listen up to t wires

Perfect security: distribution of any t wires is independed on input

Security Against Probing Attacks

Adversary is able to listen up to t wires

Perfect security: distribution of any t wires is independed on input

Statistical security: for any fixed *t*-attack it is a negligible chance over a random execution that observable distribution differs with secure (independed from input) distribution

Proposed Solution

Transform any circuit C to I, C', D

Proposed Solution

Transform any circuit C to I, C', D

- I: very simple encoding block. Adversary not allowed to listen internal wires
- O: very simple decoding block. Adversary not allowed to listen internal wires
- C': transformation image of C. Adwersary can listen up to t wires on execution

Motivation

Main application:

Protection hardware realizations of block cyphers (AES,...) with embedded key from probing attacks

Private circuits: Definition and Motivation

Secret Sharing Construction

3 Fake Chanels Construction

Any ideas?

Any ideas?

Trivial (still working) approach: use t+1 wires in C' for each wire in C. For simplicity of further proof we use m=2t+1 wires

Any ideas?

Trivial (still working) approach: use t+1 wires in C' for each wire in C. For simplicity of further proof we use m=2t+1 wires

Are we done? What do we need?

Any ideas?

Trivial (still working) approach: use t+1 wires in C' for each wire in C. For simplicity of further proof we use m=2t+1 wires

Are we done? What do we need?

How to compute gates? What Encoding/Decoding to use?

NOT Gate

Encoding:

Encode input bit b_i to $r_1, \ldots, r_{2t}, b_i \oplus_{j=1}^{2t} r_j$

Decoding:

Decode output bit $c_i = \bigoplus_{j=1}^{2t+1} w_j$

NOT Gate

Encoding:

Encode input bit b_i to $r_1, \ldots, r_{2t}, b_i \oplus_{j=1}^{2t} r_j$

Decoding:

Decode output bit $c_i = \bigoplus_{j=1}^{2t+1} w_j$

NOT gate:

Apply not to first wire in a bundle

AND Gate

We need to compute encoding for $c = \sum_{i,j} a_i b_j$

AND Gate

We need to compute encoding for $c = \sum_{i,j} a_i b_j$

We take the following encoding:

$$c_i = a_i b_i \oplus_{j \neq i} z_{i,j},$$

where for i < j we take $z_{i,j}$ at random, while for i > j we take

$$z_{i,j} = (z_{j,i} \oplus a_i b_j) \oplus a_j b_i$$

Security/Cost Analysis

Claim: Fixing up to t values of $a_i, b_j, a_i b_j, z_{i,j}, c_j$ provides no information on a, b and c

Security/Cost Analysis

Claim: Fixing up to t values of $a_i, b_j, a_i b_j, z_{i,j}, c_j$ provides no information on a, b and c

Cost: $|C'| = t^2 |C|$

1 Private circuits: Definition and Motivation

Secret Sharing Construction

Fake Chanels Construction

Statistical Security

Two parameters: security parameter k and adversary power t

Statistical Security

Two parameters: security parameter k and adversary power t

Statistical security:

For any fixed *t*-attack

chance over a random execution that

observable distribution differs with independed from input distribution

is negligible (in terms of k)

Statistical Security

Two parameters: security parameter k and adversary power t

Statistical security:

For any fixed *t*-attack chance over a random execution that

observable distribution differs with independed from input distribution is negligible (in terms of k)

Our goal: $t \cdot poly(k)$ cost

Refreshing Effect

Observation over secret sharing construction: t/2 observations even for every gate provide no information on original data

Refreshing Effect

Observation over secret sharing construction: t/2 observations even for every gate provide no information on original data

Proof: refreshing effect

Step 1: Security Against Random Attack

Random attack: adversary is able to observe each wire with probability 1/10k

Step 1: Security Against Random Attack

Random attack: adversary is able to observe each wire with probability 1/10k

Take secret sharing construction for k adversary power

- To broke a circuit advesary need $k/2 >> \frac{1}{10k}k^2$ wires in some gate
- Probability calculations shows that this has a negligible chance

Step 2: Security Against Worst Case Attack

Final step: to force any attack no more effective than random attack

- Split every wire to s wires
- Only one contain 0/1 information
- All others contain special symbol *
- A meaningful channel is elected in run time

Home Problem 5

HP5: Invent a n^2 sorting circuit (one gate sorts two elements)

Comment on Home Problem 4: prove that probability is smaller than 1/m from some m_0

Home Problem 5

HP5: Invent a n^2 sorting circuit (one gate sorts two elements)

Comment on Home Problem 4: prove that probability is smaller than 1/m from some m_0

Deadline 1: tomorrow lecture, 17/03/2006 — 16-15

Deadline 2: 31/03/2006 — 16-15

Summary

Main points:

 New model of hardware attack: up to t wires are observed by adversary

Summary

Main points:

- New model of hardware attack: up to t wires are observed by adversary
- Two types of data security: perfect nad statistical

Summary

Main points:

- New model of hardware attack: up to t wires are observed by adversary
- Two types of data security: perfect nad statistical
- Cost of protecting transformation is $t^2|C|$ and tpoly(k)|C| correspondingly

Reading List

Y. Ishai, A. Sahai, D. Wagner

Private circuits: securing hardware against probing attacks, 2003. http://www.cs.ucla.edu/~sahai/work/privcirc-crypto03.ps.

Thanks for attention. Questions?