Introduction to Obfuscation. Black-box Security

Yury Lifshits

Steklov Institute of Mathematics, St.Petersburg, Russia yura@logic.pdmi.ras.ru

Tartu University 13/03/2006

Yury Lifshits (Steklov Inst. of Math)

latar director to Obfice

Tartu'06

Yury Lifshits (Steklov Inst. of Math)

Introduction to Obfuscation

rtu'06 3 / 2

Outline

- Applications of Obfuscation
 - Classification of Threats
 - Applications in Software Protection
 - Applications in Mobile Agents
 - Applications in Cryptography
 - More Applications
- Blackbox Secure Obfuscation
 - Defining Security of Obfuscation
 - Impossibility Result

Yury Lifshits (Steklov Inst. of Math)

Introduction to Obfuscation

Tartu'06 5 / 2

Applications in Software Protection

Situation: company distribute (sell) software products.

Question: Threats and applications you see?

- Integrity protection
 - Against decomposition and reusing code fragments
 - Against adding new functionalities
 - Against changing the order of computation
- Protection of internal constraints on:
 - Usage time
 - Input data
 - Availability of customization
 - Quality of performed tasks
 - Number of runs
- Watermarks protection
 - Deleting watermarks in obfuscated program is much harder

Idea of Obfuscation

Three properties:

- Functionality preserving
- Increase of code size, time & space requirements are restricted (usually by constant factor)
- Obfuscated program is not understandable

ry Lifshits (Steklov Inst. of Math) Introduction to Obfuscation Tartu'06 2 / 2

Outline

- Applications of Obfuscation
 - Classification of Threats
 - Applications in Software Protection
 - Applications in Mobile Agents
 - Applications in Cryptography
 - More Applications
- Blackbox Secure Obfuscation
 - Defining Security of Obfuscation
 - Impossibility Result

ry Lifshits (Steklov Inst. of Math) Introduction to Obfuscation Tartu'06 4 / 28

Different Types of Attacks

How can adversary act with program?

- Study program (extracting knowledge)
- Decompose program (reusing code/algorithms of it)
- Change program behavior (making illegal modifications)

More attacks?

Yury Lifshits (Steklov Inst. of Math) Introduction to Obfuscation Tartu'06 6 /

Protection of IF Operator

Consider a program containing the following construction:

If (some condition) then
do something important
else do nothing (or some not interesting things)

Adversary attack: destroy this IF operator i.e. get a program with unconditional important module.

(Steklov Inst. of Math) Introduction to Obfuscation Tartu'06 7 / 28 Yury Lifshits (Steklov Inst. of Math) Introduction to Obfuscation Tartu'06 8 / 28

Mobile Agents Technology

Situation: author distribute programs for his own needs.

Question: Threats and applications you see?

- Privacy of data in mobile agents
 - Sending hard computational task to untrusted claster
 - Auxiliary computing devices for smart cards
- Illegal agent modification
 - Network monitoring system
- Keys protection
 - Buying agents

Yury Lifshits (Steklov Inst. of Math)

Introduction to Obfusca

artu'06 9 / 28

Buying Agent

Another important example is buying agent.

What do we have: a set of "sellers" with installed buying agents. These agents have a task to purchase a specific good if some conditions (usually on price) holds

Aspects:

- Buying agents have keys to the credit card or electronic money.
- Adversary is always able to delete an agent.
- Agents owner wants to prevent key's extraction and changing conditions of purchase or even buying wrong good.

Yury Lifshits (Steklov Inst. of Math)

Introduction to Obfuscation

artu'06 11 / 2

New Public-Key Cryptosystems

General idea: given a private-key (symmetric) cryptosystem publish obfuscated encryption algorithm $O(E_k)$ as a public key.

Analysis:

- We must be sure that key extraction of $O(E_k)$ is computationally hard
- Moreover, rewriting $O(E_k)$ to any efficient program computing D_k must be computationally hard
- Conclusion: starting symmetric cryptosystem should have sufficient difference in encrypting and decrypting algorithms

Yury Lifshits (Steklov Inst. of Math)

Introduction to Obfuscation

Tartu'06 13 / 2

More Applications

- Diversity producing (every user receive his own version)
 Makes virus attacks harder
- Guaranteed slowdown of encrypting procedure in cryptosystems
 Makes brute-force attacks harder
- Digital Rights Management software
 Protection against extracting secret keys from players for copyrighted media

Question: Your ideas of applications?

Network Monitoring Systems

First interesting example of mobile agent needed protection is network monitoring and management systems.

We have: a huge network consisting of nodes, and a monitoring agent installed on each node.

Some observations:

- Agents interacts with their hosts
- Agents interacts with central (the only trusted) node. We call it control center.
- We can't protect agents against just deleting (uninstalling them)
- We want to protect the "state" of agents and their proper execution

Yury Lifshits (Steklov Inst. of Math)

Introduction to Obfuscation

T----'06

Applications in Cryptography

What applications in cryptography can we imagine?

- $\bullet \ \, \mathsf{Private} \,\, \mathsf{key} \,\, \mathsf{cryptosystem} \,\, \to \,\, \mathsf{Public} \,\, \mathsf{key} \,\, \mathsf{cryptosystem}$
 - It was mentioned even in famous Diffie-Hellman paper
- Constructing homomorphic encryption schemes

Realizing random oracles in cryptosystems

Yury Lifshits (Steklov Inst. of Math)

Introduction to Obfuscation

tu'06 12 / 28

Constructing Homomorphic Encryption

Given good enough obfuscator it's easy to construct a homomorphic encryption.

Question: Any ideas how to do this?

 ${\color{red}\textbf{Construction:}} \ as \ such \ homomorphic \ encryption \ we \ can \ take \ just \ any \ public \ key \ cryptosystem:$

Input: E(x), E(y)

Program algorithm: using private key decrypt x and y,

compute x + y (respectively xy), then encrypt it.

Output: E(x + y) (respectively, E(xy))

If we are able to obfuscate P and Q in the way that extracting private key and intermediate results (x and y) is computationally hard than we are done!

Yury Lifshits (Steklov Inst. of Math)

Introduction to Obfuscation

Tartu'06 14 / 28

Outline

- Applications of Obfuscation
 - Classification of Threats
 - Applications in Software Protection
 - Applications in Mobile Agents
 - Applications in Cryptography
 - More Applications
- Blackbox Secure Obfuscation
 - Defining Security of Obfuscation
 - Impossibility Result

ry Lifshits (Steklov Inst. of Math) Introduction to Obfuscation Tartu'06 15 / 28 Yury Lifshits (Steklov Inst. of Math) Introduction to Obfuscation Tartu'06 16 / 28

Security Definitions in Cryptography (1)

- Define adversary's inputs
- ② Define adversary's goal
- Security = achieving goal is computationally hard

Proof instrument:

Reduction: "If somebody can break this new system than he also able to solve some well-known hard problem"

Example: security of pseudorandom generators

Yury Lifshits (Steklov Inst. of Math)

Introduction to Obfuscatio

artu'06 17 / 28

Ana and BAna

We are interested in 2 types of polynomial-time analyzers:

• Ana is a source-code analyzer that can read the program.

 BAna is a black-box analyzer that only queries the program as an oracle.

$$BAna^{P}(time(P))$$

Black-Box security

Ana can't get more information than BAna could

Yury Lifshits (Steklov Inst. of Math)

Introduction to Obfuscation

Tartu'06 19 / 2

Unobfuscatable Function Family

Family $\mathcal{H} = \cup H_k$

 H_k is a set (distribution) of functions $B^{n_k} \to B^{m_k}$

- $h \in H_k$ computable in poly(k) time
- ullet $\exists \pi: \mathcal{H}
 ightarrow \{0,1\}$ such that
 - $|Pr\{S^h(1^k) = \pi(h)\} 1/2| = \nu(k)$
 - $\exists A$ such that for every TM M computing h, $A(M) = \pi(h)$

Yury Lifshits (Steklov Inst. of Math

Introduction to Obfuscation

Tartu'06 21 / 28

Counterexample

Cannibalistic construction:

$$C_{\alpha,\beta}(x) = \begin{cases} \beta, & x = \alpha \\ 0, & \text{otherwise} \end{cases}$$

$$D_{\alpha,\beta}(C) = \begin{cases} 1, & C(\alpha) = \beta \\ 0, & \text{otherwise} \end{cases}$$

$$Z_k(x) = 0^k$$

Intuition: it is difficult to distinguish pairs $C_{\alpha,\beta},D_{\alpha,\beta}$ from pair $Z_k,D_{\alpha,\beta}$ given only black box access to these programs.

Security Definitions in Cryptography (2)

- Define ideal model
- Security = adversary cannot compute more than in ideal model

Proof instrument:

Simulation: "For any property that could be extracted from the new system almost the same property can be extracted from the ideal model"

Example: security of zero-knowledge proofs

Yury Lifshits (Steklov Inst. of Math)

ntroduction to Obfuscation

Tartu/06 19 / 29

Black-box Security

Randomized algorith ${\it O}$ is an Obfuscator if three following conditions hold:

- (functionality) \forall TM M: $O(M) \approx M$
- (effectiveness) $\exists p: M(x)$ terminates in t steps $\Rightarrow O(M)(x)$ terminates in p(t) steps.
- (black-box security) For every PPT A there exists PPT S such that for all TMs M:

$$|Pr\{A(O(M)) = 1\} - Pr\{S^M(1^{|M|}) = 1\}| = \nu(|M|).$$

Yury Lifshits (Steklov Inst. of Math)

Introduction to Obfuscatio

Tartu'06 20 / 28

Unobfuscatable 2-Functions Family

Family $\mathcal{G} = \cup G_k$

 G_k is a set (distribution) of pairs of functions $B^{n_k} \to B^{m_k}$

- $(g_1, g_2) \in G_k$ computable in poly(k) time
- ullet $\exists \pi: \mathcal{G}
 ightarrow \{0,1\}$ such that
 - $|Pr\{S^{g_1,g_2}(1^k) = \pi(g_1,g_2)\} 1/2| = \nu(k)$
 - $\exists A$ such that for every TMs M_1, M_2 computing $g_1, g_2,$ $A(M_1, M_2) = \pi(g_1, g_2)$

Existence of unobfuscatable function families and 2-finction families. What follows from what?

Yury Lifshits (Steklov Inst. of Math)

Introduction to Obfuscation

Tartu'06 22 / 28

Technical Details

We leave out technical details:

- ullet Truncated version of D
- Combining pair of functions into a single one.

Stekkov Inst. of Math) Introduction to Obfuscation Tartu'06 23 / 28 Yury Lifshits (Stekkov Inst. of Math) Introduction to Obfuscation Tartu'06 24 / 28

Extensions of Impossibility Result

More impossibilities of obfuscation:

- Unobfuscatable functional properties (not only predicates)
- Computationally easy but still unobfuscatable programs (in TC₀
- Attack (deobfuscation algorithm) is known in advance
- Obfuscator might preserve functionality only approximately
- Impossibility of obfuscation for sampling algorithms

Whether the family $f_{\alpha}(x) = x \cdot \alpha$ is obfuscatable with black-box security?

Home Problem 1

Summary

Main points:

- Rough idea of applications: cryptosystem design, mobile agents technology, software protection.
- Black-box security: obfuscated program tells no more than input-output behaviour.
- There exists unobfuscatable function families

Reading List

B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S., Vadhan, K. Yang On the (Im)possibility of Obfuscating Programs, 2001. http://eprint.iacr.org/2001/069.

K. Yang
Talk on "(Im)possibility of Obfuscating", 2001.
http://www.cs.cmu.edu/~yangke/papers/obf-talk.pdf

N. Kuzyurin, N. Varnovsky and V. Zakharov
Mathematical problems of Obfuscation, 2004.
http://www.ispras.ru/news/downloads/obfuscation/obfuscation.pdf

Lecture Notes on Program Obfuscation, 2005. http://logic.pdmi.ras.ru/~yura/obfuscation.html

Thanks for attention. Questions?