Преобразование Берроуза-Вилера

Лекция N 2 курса "Алгоритмы для Интернета"

Юрий Лифшиц

ПОМИ РАН - СП6ГУ ИТМО

Осень 2006

Во всяком хаосе есть космос, в каждом беспорядке скрыт тайный порядок

Карл Юнг

2 / 28

1/28

.

План лекции

- Вычисление BWT
 - Определение преобразования
 - Вычисление в прямую сторону
- 2 Вычисление обратного преобразования
 - Магический вектор Т
 - Восстановление текста с помощью вектора Т
- Применение к архивированию
 - Кодирование move-to-front
 - Почему BWT помогает сжатию текстов

4/:

История BWT

Придумали: Michael Burrows и David Wheeler в 1994, работая в Digital Equipment Corporation (Теперь это Hewlett-Packard).

Реализации: bzip2, szip

David Wheeler:

3 / 28

Часть І

Как определяется преобразование Берроуза-Вилера?

Как вычислить BWT за линейное время?

5 / 28

Определение

Пусть дан текст $S=s_1\dots s_n$. Преобразование Берроуза-Вилера получает из него новый текст следующим образом:

- Приписываем в конец знак \$ (последняя буква алфавита)
- \bullet Выписываем все n+1 циклических сдвига текста
- ullet Сортируем этот n+1 текст в алфавитном порядке
- Выдаем последний столбец L

Зная только L, как догадаться, на каком месте в отсортированном списке шел исходный текст S?

Пример

Пусть S = racaa, дописываем \$

Циклические сдвиги:	Сортируем:	
racaa\$	aa\$rac	
acaa\$r	acaa\$r	
caa\$ra	a\$raca	
aa\$rac	caa\$ra	
a\$raca	racaa\$	

\$racaa

Результат: сгаа\$а

\$racaa

BWT за линейное время

С какой фразы начинается алгоритм?

Конечно, "Построим суффиксное дерево..."

Напомним: чтобы построить **суффиксное дерево** (ST), нужно приписать специальный символ \$ к тексту, взять все n+1 суффикс, подвесить их за начала и склеить все ветки, идущие по одинаковым буквам. В каждом листе записывается номер суффикса, который в нем заканчивается.

- Допишем \$
- Построим суффиксное дерево
- В каждой внутренней вершине отсортируем детей в алфавитном порядке
- Прочтем числа во всех листьях слева на право
- **5** Читая i, пишем в ответ s_{i-1}

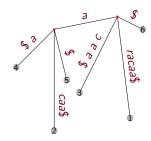
9 / 28

Наблюдения:

- Алфавитный порядок суффиксов совпадает с алфавитным порядком сдвигов
- В листьях мы читаем порядок стартов суффиксов
- Буква s_{i-1} это последняя буква сдвига, начинающегося с s_i

10 / 28

Пример: гасаа\$



Порядок суффиксов: aa\$, acaa\$, a\$, caa\$, racaa\$, \$ Порядок сдвигов: aa\$rac, acaa\$r, a\$raca, caa\$ra, racaa\$, \$racaa Числа в листьях: 4,2,5,3,1,6 Ответ: $s_3,s_1,s_4,s_2,s_6,s_5=craa\a

11/28

Часть II

Как вычислить обратное преобразование за линейное время?

Вспомогательная конструкция: магический вектор T

Как вычислить T, и как с его помощью восстановить текст?

12 / 28

Определение вектора T

Пусть матрица букв M — это все отсортированные сдвиги текста S. Мы знаем только ее последний столбец L.

Определение: вспомогательная матрица M' получается перестановкой столбца L в начало.

Определение: для каждого k определим T[k] так, чтобы k-ая строка M' совпадала с T[k]-ой строкой M.

Переформулировка: пусть M_k — Это k-ый по алфавиту сдвиг текста, тогда **следующий** сдвиг в отсортированном списке сдвигов — это $M_{T[k]}$.

13 / 28

Пример магического вектора

Mатрица M:

Матрица M':

T[1] = 4, T[2] = 5, T[3] = 1, T[4] = 2, T[5] = 6, T[6] = 3

14 / 2

Вычисление магического вектора T

Два пробега по L, один по алфавиту:

- ullet Для каждой буквы алфавита lpha вычислить количество раз C(lpha), которые она встречается
- ullet Для каждой буквы алфавита lpha вычислить количество раз D(lpha), которые встречаются все меньшие ее буквы
- ullet Для каждого номера $1 \leq i \leq n+1$ вычислить количество раз P(i), которое буква L_i уже нам встретилась выше по столбцу

Таинственная формула: $T[i] = D(L_i) + P(i) + 1$

Домашняя задача: как сэкономить один пробег по тексту?

Формула для T

Таинственная формула: $T[i] = D(L_i) + P(i) + 1$

Доказательство:

- Нам нужно узнать, на каком месте в отсортированном списке находится сдвиг, предыдущий к M_i
- \bullet Он начинается с буквы L_i
- Это значит он стоит после $D(L_i)$ сдвигов, которые начинаются на меньшие буквы
- (!) Среди сдвигов, которые начинаются на L_i он находится в точности на P(i)+1 месте

Формула восстановления

Зная столбец L как узнать последнюю букву текста?

Глупый вопрос! Последняя буква — это всегда \$

Зная столбец L как узнать предпоследнюю букву текста?

Пусть \$ находится на месте I в столбце L. Тогда предпоследняя буква — это $L_{T[I]}$.

Доказательство: как мы знаем, M_I — это исходный текст, тогда $M_{T[I]}$ — это текст, в котором \$ перенесли в начало, т.е. на последнем месте $L_{T[I]}$ оказалась как раз предпоследняя буква.

Общий алгоритм обратного BWT

- Для каждой буквы алфавита α вычислить количество раз $C(\alpha)$, которые она встречается
- ullet Для каждой буквы алфавита lpha вычислить количество раз D(lpha), которые встречаются все меньшие ее буквы
- ullet Для каждого номера $1 \leq i \leq n+1$ вычислить количество раз P(i), которое буква L_i уже нам встретилась выше по столбцу
- ullet По формуле $T[i] = D(L_i) + P(i) + 1$ вычислить вектор T
- **•** По формуле $s_{n-k} = L_{T^{k+1}[I]}$ вычислить все буквы текста от конца к началу

19 / 28

Часть III

Что делать с текстом после преобразования Берроуза-Вилера?

Почему BWT так хорошо работает?

21 / 28

Пример: гасаа\$

Текст: *racaa*\$ Начальная кодировка:

$$Enc(a) = 0, Enc(c) = 1, Enc(r) = 2, Enc(\$) = 3$$

Читаем r — Пишем 2, новая кодировка rac\$

Читаем a — Пишем 1, новая кодировка arc\$

Читаем c — Пишем 2, новая кодировка cra\$

Читаем a — Пишем 2, новая кодировка acr\$

Читаем a — Пишем 0, новая кодировка acr\$

Читаем \$ — Пишем 3, финальная кодировка \$*acr*

Результат: 212203, кодировка \$*acr*

От буквы к следующей

Пусть мы уже знаем, что $M_k = s_{j+1} \dots s_n \$ s_1 \dots s_j$, и соответственно $s_j = L_k$, тогда мы можем узнать предыдущую букву:

- ullet По определению вектора T мы знаем, что $M_{T[k]} = s_j \dots s_n \$ s_1 \dots s_{j-1}$
- Таким образом, $s_{j-1} = L_{T[k]}$
- Формулы для всех букв текста от начала к концу:

$$$ = s_{n+1} = L_I; \quad s_n = L_{T[I]}, \quad \dots$$

...
$$s_{n-k} = L_{T^{k+1}[f]}$$
 ... $s_1 = L_{T^n[f]}$

18 / 28

Пример вычисления: racaa\$

Столбец *L*: *craa*\$*a*

Вектор *Т*: [4,5,1,2,6,3]

Стартовый индекс 1: 5

$$s_6 = L_1 = L_5 = \$$$
,

$$s_5 = L_{T[5]} = L_6 = a$$
,

$$s_4 = L_{T[6]} = L_3 = a$$
,

$$s_3 = L_{T[3]} = L_1 = c,$$

 $s_2 = L_{T[1]} = L_4 = a,$

$$s_1 = L_{T[4]} = L_2 = r$$

20 / 28

Определение MTF

Move-to-front — это перезапись текста в

"адаптирующейся" кодировке:

- Начинаем с кодировки Enc(a) = 0, ..., Enc(z) = 25
- Читаем текст слева направо
- \bullet Читаем очередную букву lpha
- Пишем в выходной поток $Enc(\alpha)$
- Меняем кодировку: $Enc(\alpha) = 0$, для всех букв, которые стояли выше α применяем Enc := Enc + 1
- Результат: последовательность чисел и финальная кодировка

Как обратно восстановить текст из кодировки move-to-front?

22 /

Почему BWT работает?

Схема архивирования:

- Применить к тексту прямое преобразование Берроуза-Вилера
- Закодировать полученный последний столбец с помощью Move-to-Front
- Полученную числовую последовательность заархивировать классическим архиватором (например, Хаффманом)

Почему текст полученный по BWT+MTF лучше архивируется, чем исходный?

Ответ: После BWT текст становится "локально-однородным", после MTF последовательность содержит много маленьких чисел и мало больших.

Иллюстрация из [BW94]:

final		
char	sorted rotations	
(L)	sorted lotations	
a	n to decompress. It achieves compression	
0	n to perform only comparisons to a depth	
0	n transformation} This section describes	
0	n transformation} We use the example and	
0	n treats the right-hand side as the most	
a	n tree for each 16 kbyte input block, enc	
a	n tree in the output stream, then encodes	
i	n turn, set \$L[i]\$ to be the	
i	n turn, set \$R[i]\$ to the	
0	n unusual data. Like the algorithm of Man	
a	n use a single set of probabilities table	
е	n using the positions of the suffixes in	
i	n value at a given point in the vector \$R	
е	n we present modifications that improve t	
e	n when the block size is quite large. Ho	
i	n which codes that have not been seen in	
i	n with \$ch\$ appear in the {\em same order	
i	n with \$ch\$. In our exam	
0	n with Huffman or arithmetic coding. Bri	
0	n with figures given by Bell~\cite{bell}.	

25 / 28

27 / 28

Сегодня мы узнали:

Главные моменты

- Преобразование Берроуза-Вилера: взять все циклические сдвиги, отсортировать и выдать последний столбец
- Прямое преобразование считается с помощью суффиксного дерева
- Обратное преобразование считается с помощью магического вектора T
- После BWT нужно применить move-to-front, затем Хаффмана.

Вопросы?

Задача

Статус задач: решать их необязательно, но они будут выдаваться на экзамен (на пятерку и в спорных случаях).

Как по столбцу L вычислить вектор T за два пробега по тексту и один пробег по алфавиту?

Можно ли реализовать Move-to-Front за время $O(n \log |\Sigma|)$, где Σ — используемый алфавит, а n длина текста?

26 / 28

28 / 28

Источники

http://logic.pdmi.ras.ru/~yura/internet.html Страница курса

Использованные материалы:

M. Burrows and D. Wheeler.
A block sorting lossless data compression algorithm.
http://www.hpl.hp.com/techreports/Compaq-DEC/SRC-RR-124.pdf

Data Compression with the Burrows-Wheeler Transform

Giovanni Manzini
The Burrows-Wheeler Transform: Theory and Practice

Юрий Лифшиц Преобразование Берроуза-Вилера. Аудиолекция.