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Problem Introduction

A database of some retail company consists of transactions which
contain items bought together. The question is to derive
frequently bought itemsets and relations among them.

Example

Many people buy bread, butter and milk together. An association
rule would be {bread , butter} → milk , if most the transactions,
when bread and butter was bought, also contained item milk.



Formal Statement of the problem I

I A set I of m items : {i1, . . . , im}.
I A family D of transactions: ∀T ∈ DT ⊆ I.

I s, c ∈ [0, 100]

Here we consider only simple association rules:

Definition (Association Rule)

X → {y}, where X ⊆ I and y ∈ I.



Formal Statement of the problem II

Definition (Confidence& Support)

I We say that an association rule X → {y} has confidence at
least c , if c% of transactions in D that contain X , also
contain y .

I The rule X → {y} has support s in the transaction set D if at
least s% of all transactions contain X ∪ {y}.

Problem
Find all association rules in D with support at least s and
confidence c.



Problem Decomposition: 2 steps

1. Find all large itemsets,i.e. those of support at least s.

2. Generate from these large itemsets all association rules that
have confidence at least c .

The second step is straightforward!
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First Step: Algorithm Apriori

initialization: L1 = {large 1-itemsets};1

for (k = 2; Lk−1 6= ∅; k + +) do2

Ck =apriori-gen(Lk−1);//New candidates;3

for all transactions T ∈ D do4

CT = subset(Ck ,T );//Candidates contained in T ;5

for all candidates c ∈ CT do6

c .count + +;7

end8

end9

Lk = {c ∈ Ck |c .count ≥ minsup};10

end11

Answer=∪kLk ;12



Candidate Generation apriori-gen

I Join step
insert into Ck ;
select p.item1, p.item2, , p.itemk−1, q.itemk−1;
from Lk−1p, Lk−1q;
where p.item1 = q.item1, . . . , p.itemk−2 = q.itemk−2, p.itemk−1 <
q.itemk−1;

I Prune step
for every itemsets c ∈ Ck do

for every (k − 1)-subset s of c do
if (s /∈ Lk−1) then

delete c from Ck

end
end

end

The procedure generates a superset of the set of all large
k-itemsets.



Candidate Generation apriori-gen

I Join step
insert into Ck ;
select p.item1, p.item2, , p.itemk−1, q.itemk−1;
from Lk−1p, Lk−1q;
where p.item1 = q.item1, . . . , p.itemk−2 = q.itemk−2, p.itemk−1 <
q.itemk−1;

I Prune step
for every itemsets c ∈ Ck do

for every (k − 1)-subset s of c do
if (s /∈ Lk−1) then

delete c from Ck

end
end

end

The procedure generates a superset of the set of all large
k-itemsets.



Example

I Let L3 = {{1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {1, 3, 5}, {2, 3, 4}}
I After the Join step: C4 = {{1, 2, 3, 4}, {1, 3, 4, 5}}
I The Prune step deletes the itemset {1, 3, 4, 5} because
{1, 4, 5} /∈ C4



Modifications of the Algorithm

I generalize association rules to X → Y with
X ,Y ⊂ I,X ∩ Y = ∅

I speed-up by testing only transactions T ∈ D that make sense

I No running time guarantees, but good performance in practice



Identifying Duplicates on the Web& Document similarity

Problem
Given a copy of the web. Identify near duplicates of the web pages.

Idea
First compute sketches of every document. Every sketch is small.
Introducing appropriate measure(Jaccard) identify duplicates.



Identifying Duplicates on the Web& Document similarity

Problem
Given a copy of the web. Identify near duplicates of the web pages.

Idea
First compute sketches of every document. Every sketch is small.
Introducing appropriate measure(Jaccard) identify duplicates.



ω-shingling

Definition
Given a document D. A contiguous subsequence of ω words in D
is called an ω-shingle. ω-shingling of D is a (multi-)set S(D, ω) of
all ω-shingles in D

Example

I D = (a, rose, is, a, rose, is, a, rose)

I 4-shingling is
S(D, 4) = {(a, rose, is, a), (rose, is, a, rose), (is, a, rose, is)}
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Resemblance, Containment

Given two documents, A and B. We fix a shingle of size ω.

Definition
We call

rω(A,B) =
|S(A, ω) ∩ S(B, ω)|
|S(A, ω) ∪ S(B, ω)|

the resemblance of A and B.

and

Definition
We call

cω(A,B) =
|S(A, ω) ∩ S(B, ω)|

|S(A, ω)|
the containment of A in B.

The resemblance captures the notion of ’roughly the same’ !
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Computing Sketches

Let Ω be a universe of all shingles of size ω. Assume that Ω is
totally ordered. Further let MINs(A) denote the s smallest
elements of A.

Definition
Given the document A, s ∈ N and π : Ω → Ω permutation chosen
uniformly at random. We define the sketch M(A) of A of size s to
be the s smallest elements among A under π:

M(A) = MINs{π(A)}

Theorem (A.Broder’1997)

rω(A,B) =
|MINs(M(A) ∪M(B)) ∩M(A) ∩M(B)|

|MINs(M(A) ∪M(B))|
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Min-wise Independent families

Problem
In practice, it is impossible to choose π uniformly at random!

Definition (Min-wise independent family)

A family F ⊆ Sn is min-wise independent if for any set
X ⊂ {1, . . . , n} and any x ∈ X , when π is chosen at random in F
we have

Pr(min(π(X )) = π(x)) =
1

|X |

Definition (ε-approximately min-wise independent family)

A family F ⊆ Sn is ε-approximately min-wise independent if for
any set X ⊂ {1, . . . , n} and any x ∈ X , when π is chosen at
random in F we have

|Pr(min(π(X )) = π(x))− 1

|X |
| ≤ ε

|X |
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Bounds for Minimum Size Families I

Theorem
F is at least as large as the least common multiple of the numbers
1, 2, . . . , n and hence |F| ≥ en−o(n).

Proof.

I take any subset X of {1, . . . , n}, |X | = j

I every element of X must be the minimum under F the same
number of times, so j divides |F|

I use Prime Number Theorem to derive the lower bound of
en−o(n)!



Bounds for Minimum Size Families II

Theorem
There exists F of size

dlog ne∏
i=1

(⌈
n/2i−1

⌉
dn/2ie

)

Exercise
Prove that this bound is divisible by the least common multiple of
the first n natural numbers.
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Existential Upper Bound for ε-approximate Families

Theorem
There exist families of size O(n2

ε2 ) that are approximately minwise
independent with high probability.

In practice, one cannot conveniently represent a random
permutation!

Problem
Construct such family!

One tries families of linear permutations which behave good in
practice.
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Problem Introduction

Problem
There are n people and m books. Every person likes exactly k
books.
Given another person Q that likes k books, find a person in the
database that likes maximum possible number of books.
Constraints:

I k � n,m

I query time is poly(k, log n)

I preprocessing time: poly(k, n,m)



Our Approach I

Utilize the idea of characteristic itemsets:

I there are O(poly(k) ∗ n) characteristic itemsets (of books)

I every person likes at least one characteristic itemset

I every characteristic itemset is appreciated by poly(k) persons

I every person shares at least one characteristic itemset with
each of its nearest neighbors



Our Approach II

1. Given database, extract O(n) charactersitic itemsets

2. from the query Q distill characteristic itemsets

3. compute nearest neighbors for Q



Thank you & Happy

Halloween!
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