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Approximate Algorithms

c-Approximate r-range query: if there at least one
peS: d(g,p) <r returnsome p': d(q,p') <cr

c-Approximate nearest neighbor query: return some
p'eS: d(p,q) < crun, where ryy = minpes d(p, q)

Today we consider only range queries
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Today's Focus

Data models:
@ d-dimensional Euclidean space: R

@ Hamming cube: {0,1}9 with Hamming distance

Our goal: provable performance bounds
@ Sublinear search time, near-linear preprocessing space

@ Logarithmic search time, polynomial preprocessing space

Still an open problem: approximate nearest neighbor
search with logarithmic search and linear preprocessing
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Locality-Sensitive Hashing:

General Scheme



Definition of LSH
Indyk&Motwani'98

Locality-sensitive hash family H with parameters
(C7r7P17P2):

o If [p— ql| < r then 2ry[h(p) = h(q)] > P1
o If ||p— q|| > cr then Pry[h(p) = h(q)] < P,

\/ |
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The Power of LSH

Notation: p = :gig?gg <1

Theorem

Any (c, r, Py, P;)-locality-sensitive hashing leads to an
algorithm for c-approximate r-range search with
(roughly) n” query time and n*™* preprocessing space




The Power of LSH

log(1/P1)

og(1/Ps) < 1

Notation: p =

Theorem

Any (c, r, Py, Py)-locality-sensitive hashing leads to an
algorithm for c-approximate r-range search with
(roughly) n” query time and n*™* preprocessing space

Proof in the next four slides
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LSH: Preprocessing

Composite hash function: g(p) =< hi(p), ..., he(p) >
Preprocessing with parameters L, k:

@ Choose at random L composite hash functions of k
components each

@ Hash every p € S into buckets gi1(p), ..., g.(p)

Preprocessing space: O(Ln)



LSH: Search

@ Compute g1(q),--.,&.(q)

@ Go to corresponding buckets and explicitly check
d(p, q) <?cr for every point there

@ Stopping conditions: (1) we found a satisfying
object or (2) we tried at least 3L objects

Search time is O(L)
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such that
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LSH: Analysis (1/2)

In order to have probability of error at most ¢ we set k., L
such that

szn% 1 L~ (1/P1)klog(1/5)

Solving these constraints:

log n

k= log(1/P,)

L= (1/Py)S7 log(1/8) = n=7™ log(1/8) = n” log(1/6)



LSH: Analysis (2/2)

The expected number of cr-far objects to be tried is
Piln= L

For true r-neighbor the chance to be hashed to the same
bucket as g is at least

1 (1= (/P >1— (1/e)TF >1—6



LSH: Analysis (2/2)

The expected number of cr-far objects to be tried is
Piln= L

For true r-neighbor the chance to be hashed to the same
bucket as g is at least

1 (1= (/P >1— (1/e)TF >1—6

Preprocessing space O(Ln) ~ n'*r+o(l)
Search O(L) =~ pPto(l)
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Q@ Apply low distortion embedding A into
t-dimensional Euclidean space
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Ball Grids Hashing: Idea

Q@ Apply low distortion embedding A into
t-dimensional Euclidean space

@ Set up U 4w-step grids of w-radius balls that all
together cover t-dimensional space

@ Hash object p to the id of the first ball covering
A(p)



BG Hashing: Initialization

Parameters: t = log?3 n,w = rlog'/® n, U = 2t'°¢t og n

@ Construct d x t matrix A taking every element at
random from normal distribution N(0, \/%)

@ For every 1 </ < U choose a random shift
v, € [O,4W]t



BG Hashing: Computing

@ Compute p' = A(p)

@ From / =1 to U check whether p’ is covered by i-th
grid of balls. If so return / and ball's center and
stop.

© If no such ball found return FAIL



BG Hashing: Analysis

Fact: Probability of 12 Hp A,’ﬁ l'¢ [1—c,1+¢]is at most
exp(—c’t)
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BG Hashing: Analysis

Ap'||

o & [1—e.1+¢]is at most

Fact: Probability of 172251
exp(—et)
Given two points p,s € Rf : ||p — s|| =
B(p,w) N B(s, w)
rh(p) = h(s)l = (o WY U B(s, w)

16 /20



BG Hashing: Final Result
3-pages computational proof:

_ log(1/P1)

P = Tog(1/Py) 1/c® + o(1)
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BG Hashing: Final Result

3-pages computational proof:

_ log(1/Py)

P = Tog(1/Py) 1/c® + o(1)

Theorem (Andoni & Indyk 2006)

Consider c-approximate r-range search in d-dimensional
space. Then for every 0 there is a randomized algorithm
with (roughly) n¥/<+°() query time and n**+1/¢*+o(1)
preprocessing space. For every query this algorithm
answers correctly with probability at least 1 — ¢
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Future of LSH

Achievements:

@ Provably sublinear search time

@ Utilization of low-distortion embedding

Current drawbacks:

@ Probability of error can not be amplified only in preprocessing
stage, it can not be decreased to 1/n

@ Asymptotic analysis of power degree: from what place
nt/<*+o() js really sublinear?

@ For nearest neighbor search ¢ = max "’xgg; where ren(q) is
the farthest neighbor. This might be pretty close to 1



Exercise

Prove that 2°(Y) number of randomly chosen (w, 4w)
ball grids is enough to cover t-dimensional space with
probability 1/2



Exercise

Prove that 2°(Y) number of randomly chosen (w, 4w)
ball grids is enough to cover t-dimensional space with
probability 1/2

Thanks for your attention! Questions?
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