Locality-Sensitive Hashing
Algorithmic Problems Around the Web #5

Yury Lifshits
http://yury.name

CalTech, Fall’07, CS101.2, http://yury.name/algoweb.html

Approximate Algorithms

c-Approximate r-range query: if there at least one
peS: d(g,p) <r returnsome p': d(q,p') <cr

c-Approximate nearest neighbor query: return some
p'eS: d(p,q) < cryn, where ryy = minpyes d(p, q)

Today we consider only range queries

Outline

@ General Scheme

© Ball Grids Hashing

Today's Focus

Data models:
@ d-dimensional Euclidean space: R¢

@ Hamming cube: {0,1}? with Hamming distance

Our goal: provable performance bounds
@ Sublinear search time, near-linear preprocessing space

@ Logarithmic search time, polynomial preprocessing space

Still an open problem: approximate nearest neighbor
search with logarithmic search and linear preprocessing

http://yury.name
http://yury.name/algoweb.html

Definition of LSH
Indyk&Motwani'98

Part | Locality-sensitive hash family { with parameters
(C, (rg Pl, PQ)Z

Locality-Sensitive Hashing;: o If [|p— gl < r then 2r[h(p) = h(q)] = P,
o If ||p— q|| > cr then Pry[h(p) = h(q)] < P,
General Scheme
e O

\/ |

The Power of LSH LSH: Preprocessing

Notation: p = :gggﬁg <1 Composite hash function: g(p) =< hi(p), ..., he(p) >
Preprocessing with parameters L, k:

Theorem

Any (c, r, Py, Py)-locality-sensitive hashing leads to an @ Choose at random L composite hash functions of k

algorithm for c-approximate r-range search with components each

(roughly) n” query time and n'** preprocessing space

@ Hash every p € S into buckets gi(p), - .., g1(p)

Proof in the next four slides Preprocessing space: O(Ln)

LSH: Search

@ Compute g1(q),...,8.(q)

@ Go to corresponding buckets and explicitly check
d(p, q) <?cr for every point there

@ Stopping conditions: (1) we found a satisfying
object or (2) we tried at least 3L objects

Search time is O(L)

LSH: Analysis (2/2)

The expected number of cr-far objects to be tried is
Piln= L

For true r-neighbor the chance to be hashed to the same
bucket as g is at least
L

1—(1—(1/P)K)E>1— (1/e)@PF >1—§

Preprocessing space O(Ln) ~ pltpto(l)
Search O(L) ~ nfto()

LSH: Analysis (1/2)

In order to have probability of error at most § we set k, L
such that

sznx 1 L%(l/Pl)klog(l/(S)

Solving these constraints:

log n

k= log(1/P,)

log(1/Pq

L= (1/P)= log(1/8) = ™ log(1/8) = n” log(1/0)

Part Il
Andoni&Indyk’06 Hashing

Ball Grids Hashing: Idea

@ Apply low distortion embedding A into
t-dimensional Euclidean space

© Set up U 4w-step grids of w-radius balls that all
together cover t-dimensional space

© Hash object p to the id of the first ball covering
A(p)

BG Hashing: Computing

Q@ Compute p' = A(p)

@ From /i =1 to U check whether p’ is covered by i-th
grid of balls. If so return i/ and ball's center and
stop.

@ If no such ball found return FAIL

BG Hashing: Initialization

Parameters: t = log?3n, w = rlog!/® n, U = 2"t jog n

@ Construct d x t matrix A taking every element at
random from normal distribution N(0, \/%)

@ For every 1 </ < U choose a random shift
vV, € [0,4W]t

BG Hashing: Analysis

|Ap—Ap||
lp—p'|

Fact: Probability of
exp(—&t)

¢ [1 —¢e,14¢] is at most

Given two points p,s € R" : ||[p — s|| = A:

Prlh(p) = h(s)] = ggg: VVZ; v ggz VVZ;

BG Hashing: Final Result
3-pages computational proof:

_ log(1/P1)

p= 0g(1/P,) =1/c"+ o(1)

Theorem (Andoni & Indyk 2006)

Consider c-approximate r-range search in d-dimensional
space. Then for every ¢ there is a randomized algorithm
with (roughly) n*/<+°() query time and n'*1/¢*+o(1)
preprocessing space. For every query this algorithm
answers correctly with probability at least 1 — ¢

Exercise

Prove that 2°(Y) number of randomly chosen (w, 4w)
ball grids is enough to cover t-dimensional space with
probability 1/2

Thanks for your attention! Questions?

Future of LSH

Achievements:

@ Provably sublinear search time

e Utilization of low-distortion embedding

Current drawbacks:

@ Probability of error can not be amplified only in preprocessing
stage, it can not be decreased to 1/n

@ Asymptotic analysis of power degree: from what place
nt/<*+o(1) is really sublinear?

@ For nearest neighbor search ¢ = max ;’;’2/’—8)), where rey(q) is

the farthest neighbor. This might be pretty close to 1

References

Course homepage http://yury.name/algoweb.html

@ Y. Lifshits
The Homepage of Nearest Neighbors and Similarity Search
http://simsearch.yury.name

B A. Andoni, P. Indyk
Near-Optimal Hashing Algorithms for Approximate Nearest Neighbor in High
Dimensions. FOCS'06
http://web.mit.edu/andoni/www/papers/cSquared.pdf

http://yury.name/algoweb.html
http://simsearch.yury.name
http://web.mit.edu/andoni/www/papers/cSquared.pdf

	General Scheme
	Ball Grids Hashing

